
REFERENCES
Agner, S. C., Soman, S., Libfeld, E., McDonald, M.,
Thomas, K., Englander, S., Rosen, M. A., Chin, D.,
Nosher, J., and Madabhushi, A. (2011). Textural ki-
netics: a novel dynamic contrast-enhanced (dce)-mri
feature for breast lesion classification. Journal of dig-
ital imaging, 24:446–463.
Baykal, E., Dogan, H., Ercin, M. E., Ersoz, S., and Ek-
inci, M. (2020). Transfer learning with pre-trained
deep convolutional neural networks for serous cell
classification. Multimedia Tools and Applications,
79:15593–15611.
Fusco, R., Sansone, M., Filice, S., Carone, G., Amato,
D. M., Sansone, C., and Petrillo, A. (2016). Pattern
recognition approaches for breast cancer dce-mri clas-
sification: a systematic review. Journal of medical and
biological engineering, 36:449–459.
Gomez-Flores, W. and Ruiz-Ortega, B. A. (2016). New
fully automated method for segmentation of breast le-
sions on ultrasound based on texture analysis. Ultra-
sound in medicine & biology, 42(7):1637–1650.
Hirra, I., Ahmad, M., Hussain, A., Ashraf, M. U., Saeed,
I. A., Qadri, S. F., Alghamdi, A. M., and Alfa-
keeh, A. S. (2021). Breast cancer classification
from histopathological images using patch-based deep
learning modeling. IEEE Access, 9:24273–24287.
Khoulqi, I. and Idrissi, N. (2019). Breast cancer image seg-
mentation and classification. In Proceedings of the 4th
International Conference on Smart City Applications,
pages 1–9.
Marcelino, P. (2018). Transfer learning from pre-trained
models. Towards data science, 10:23.
Militello, C., Rundo, L., Dimarco, M., Orlando, A., Conti,
V., Woitek, R., D’Angelo, I., Bartolotta, T. V., and
Russo, G. (2022). Semi-automated and interactive
segmentation of contrast-enhancing masses on breast
dce-mri using spatial fuzzy clustering. Biomedical
Signal Processing and Control, 71:103113.
Moura, D. C. and Guevara L
´
opez, M. A. (2013). An evalua-
tion of image descriptors combined with clinical data
for breast cancer diagnosis. International journal of
computer assisted radiology and surgery, 8:561–574.
Papandreou, G., Chen, L.-C., Murphy, K. P., and Yuille,
A. L. (2015). Weakly-and semi-supervised learning of
a deep convolutional network for semantic image seg-
mentation. In Proceedings of the IEEE international
conference on computer vision, pages 1742–1750.
Reig, B., Heacock, L., Geras, K. J., and Moy, L. (2020).
Machine learning in breast mri. Journal of Magnetic
Resonance Imaging, 52(4):998–1018.
Siegel, R. L., Miller, K. D., Wagle, N. S., and Jemal, A.
(2023). Cancer statistics, 2023. Ca Cancer J Clin,
73(1):17–48.
Sutton, E. J., Oh, J. H., Dashevsky, B. Z., Veeraraghavan,
H., Apte, A. P., Thakur, S. B., Deasy, J. O., and Mor-
ris, E. A. (2015). Breast cancer subtype intertumor
heterogeneity: Mri-based features predict results of a
genomic assay. Journal of Magnetic Resonance Imag-
ing, 42(5):1398–1406.
Applying Multiple Instance Learning for Breast Cancer Lesion Detection in Mammography Images
97