
Computing and Intelligent Interaction and workshops :
[proceedings]. ACII (Conference), 2013:245–251.
Kaddoura, S., Popescu, D. E., and Hemanth, J. D. (2022).
A systematic review on machine learning models for
online learning and examination systems. PeerJ. Com-
puter science, 8:e986.
Landers, R. N. and Behrend, T. S. (2022). Auditing the
AI auditors: A framework for evaluating fairness and
bias in high stakes AI predictive models. American
Psychologist, 78(1):36.
Mihaljevi
´
c, H., M
¨
uller, I., Dill, K., Yollu-Tok, A., and von
Grafenstein, M. (2023). More or less discrimination?
Practical feasibility of fairness auditing of technologies
for personnel selection. AI & Society, pages 1–17.
M
¨
okander, J. and Floridi, L. (2021). Ethics-Based Auditing
to Develop Trustworthy AI. Minds and Machines,
31(2):323–327.
Monlla
´
o Oliv
´
e, D., Du Huynh, Q., Reynolds, M., Dougia-
mas, M., and Wiese, D. (2020). A supervised learning
framework: using assessment to identify students at
risk of dropping out of a MOOC. Journal of Computing
in Higher Education, 32(1):9–26.
Ouhaichi, H., Spikol, D., and Vogel, B. (2023). Research
trends in multimodal learning analytics: A systematic
mapping study. Computers and Education: Artificial
Intelligence, 4:100136.
Raghavan, M., Barocas, S., Kleinberg, J., and Levy, K.
(2020). Mitigating bias in algorithmic hiring: evaluat-
ing claims and practices. In Proceedings of the 2020
Conference on Fairness, Accountability, and Trans-
parency, FAT* ’20, pages 469–481. ACM.
Raji, I. D., Smart, A., White, R. N., Mitchell, M., Gebru,
T., Hutchinson, B., Smith-Loud, J., Theron, D., and
Barnes, P. (2020). Closing the AI accountability gap:
defining an end-to-end framework for internal algorith-
mic auditing. In Proceedings of the 2020 Conference
on Fairness, Accountability, and Transparency, FAT*
’20, pages 33–44. ACM.
Rzepka, N., Simbeck, K., M
¨
uller, H.-G., and Pinkwart, N.
(2022). Fairness of In-session Dropout Prediction. In
Proceedings of the 14th International Conference on
Computer Supported Education (CSEDU), pages 316–
326. SCITEPRESS.
Simbeck, K. (2023). They shall be fair, transparent, and
robust: auditing learning analytics systems. AI and
Ethics.
Springer, A. and Whittaker, S. (2019). Making Transparency
Clear: The Dual Importance of Explainability and Au-
ditability. In Joint Proceedings of the ACM IUI 2019
Workshops, page 4, Los Angeles. ACM.
Stoel, D., Havelka, D., and Merhout, J. W. (2012). An
analysis of attributes that impact information technol-
ogy audit quality: A study of IT and financial audit
practitioners. International Journal of Accounting In-
formation Systems, 13(1):60–79.
Suresh, H. and Guttag, J. (2021). A Framework for Un-
derstanding Sources of Harm throughout the Machine
Learning Life Cycle. In Equity and Access in Algo-
rithms, Mechanisms, and Optimization, ACM Digital
Library, pages 1–9, New York,NY,United States. Asso-
ciation for Computing Machinery.
Toreini, E., Aitken, M., Coopamootoo, K. P. L., Elliott, K.,
Zelaya, V. G., Missier, P., Ng, M., and van Moorsel,
A. (2022). Technologies for Trustworthy Machine
Learning: A Survey in a Socio-Technical Context.
Verma, S. and Rubin, J. (2018). Fairness Definitions Ex-
plained. In 2018 IEEE/ACM International Workshop
on Software Fairness (FairWare), pages 1–7, Gothen-
burg, Sweden. IEEE.
Weigand, H., Johannesson, P., Andersson, B., and Bergholtz,
M. (2013). Conceptualizing Auditability. In De-
neck
`
ere, R. and Proper, H. A., editors, Proceedings
of the CAiSE’13 Forum at the 25th International Con-
ference on Advanced Information Systems Engineering
(CAiSE), page 8, Valencia, Spain. CEUR.
Williams, R., Cloete, R., Cobbe, J., Cottrill, C., Edwards, P.,
Markovic, M., Naja, I., Ryan, F., Singh, J., and Pang,
W. (2022). From transparency to accountability of
intelligent systems: Moving beyond aspirations. Data
& Policy, 4(2022).
Wolnizer, P. W. (2006). Auditing as Independent Authentica-
tion. Sydney University Press, Sydney.
Zook, M., Barocas, S., Boyd, D., Crawford, K., Keller,
E., Gangadharan, S. P., Goodman, A., Hollander, R.,
Koenig, B. A., Metcalf, J., Narayanan, A., Nelson, A.,
and Pasquale, F. (2017). Ten simple rules for respon-
sible big data research. PLoS computational biology,
13(3):e1005399.
Where Is the Evidence? A Plugin for Auditing Moodle’s Learning Analytics
269