
sure that the platform remains at the forefront of tech-
nology, continuously improving its realism and effec-
tiveness as a training tool.
REFERENCES
Bharti, R. K. (2023). Contribution of Medical Education
through Role Playing in Community Health Promo-
tion: A Review. Iranian Journal of Public Health.
Boucher, E. M., Harake, N. R., Ward, H. E., Stoeckl, S. E.,
Vargas, J., Minkel, J., Parks, A. C., and Zilca, R.
(2021). Artificially intelligent chatbots in digital men-
tal health interventions: A review. Expert Review of
Medical Devices, 18(sup1):37–49.
Cao, J., Tanana, M., Imel, Z. E., Poitras, E., Atkins, D. C.,
and Srikumar, V. (2019). Observing Dialogue in Ther-
apy: Categorizing and Forecasting Behavioral Codes.
arXiv:1907.00326.
Center for Behavioral Health Statistics and Quality (2023).
2023 National Survey on Drug Use and Health (NS-
DUH): Prescription drug images for the 2023 ques-
tionnaires. Technical report, Substance Abuse and
Mental Health Services Administration.
Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu,
K., Chen, H., Yi, X., Wang, C., Wang, Y., Ye, W.,
Zhang, Y., Chang, Y., Yu, P. S., Yang, Q., and Xie,
X. (2023). A survey on evaluation of large language
models. arXiv:2307.03109.
Chen, S., Wu, M., Zhu, K. Q., Lan, K., Zhang, Z., and Cui,
L. (2023). LLM-empowered Chatbots for Psychiatrist
and Patient Simulation: Application and Evaluation.
arXiv:2305.13614.
Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H.,
Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J. E.,
Stoica, I., and Xing, E. P. (2023). Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality. https://lmsys.org/blog/2023-03-30-vicuna/.
DeMasi, O., Hearst, M., and Recht, B. (2019). Towards
augmenting crisis counselor training by improving
message retrieval. In Proceedings of the Sixth Work-
shop on Computational Linguistics and Clinical Psy-
chology, pages 1––11, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.
DeMasi, O., Li, Y., and Yu, Z. (2020). A multi-persona
chatbot for hotline counselor training. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 3623––3636, Online. Associa-
tion for Computational Linguistics.
Kerr, A., Strawbridge, J., Kelleher, C., Barlow, J., Sulli-
van, C., and Pawlikowska, T. (2021). A realist eval-
uation exploring simulated patient role-play in phar-
macist undergraduate communication training. BMC
Medical Education, 21(1):325.
Kong, A., Zhao, S., Chen, H., Li, Q., Qin, Y., Sun, R., and
Zhou, X. (2023). Better zero-shot reasoning with role-
play prompting. arXiv:2308.07702.
Lee, G., Hartmann, V., Park, J., Papailiopoulos, D., and
Lee, K. (2023). Prompted LLMs as Chatbot Modules
for Long Open-domain Conversation. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 4536–4554, Toronto, Canada. Associa-
tion for Computational Linguistics.
Lin, Y.-T. and Chen, Y.-N. (2023). Llm-eval: Uni-
fied multi-dimensional automatic evaluation for open-
domain conversations with large language models.
arXiv:2305.13711.
Liu, J., Symons, C., and Vatsavai, R. R. (2022). Persona-
Based Conversational AI: State of the Art and Chal-
lenges. In 2022 IEEE International Conference on
Data Mining Workshops (ICDMW), pages 993–1001.
arXiv.
Liu, Y., Iter, D., Xu, Y., Wang, S., Xu, R., and Zhu, C.
(2023). G-eval: Nlg evaluation using gpt-4 with better
human alignment. arXiv:2303.16634.
Mianehsaz, E., Saber, A., Tabatabaee, S. M., and Faghihi,
A. (2023). Teaching Medical Professionalism with
a Scenario-based Approach Using Role-Playing and
Reflection: A Step towards Promoting Integration of
Theory and Practice. Journal of Advances in Medical
Education and Professionalism, 11(1).
Park, S., Kim, D., and Oh, A. (2019). Conversation model
fine-tuning for classifying client utterances in counsel-
ing dialogues. In Proceedings of the 2019 Conference
of the North, pages 1448–1459. Association for Com-
putational Linguistics.
Sai Sailesh Kumar Goothy, Sirisha D, and Movva Swathi
(2019). Effectiveness of Academic Role-play in Un-
derstanding the Clinical Concepts in Medical Educa-
tion. International Journal of Research in Pharma-
ceutical Sciences, 10(2):1205–1208.
Shanahan, M., McDonell, K., and Reynolds, L.
(2023). Role-Play with Large Language Mod-
els. arXiv:2305.16367.
Tanana, M., Soma, C., Srikumar, V., Atkins, D., and Imel,
Z. (2019). Development and evaluation of clientbot:
Patient-like conversational agent to train basic coun-
seling skills. In Journal of Medical Internet Research,
volume 21(7), Online. Journal of medical Internet re-
search.
Wang, J., Liang, Y., Meng, F., Sun, Z., Shi, H., Li, Z., Xu,
J., Qu, J., and Zhou, J. (2023). Is chatgpt a good nlg
evaluator? a preliminary study. arXiv:2303.04048.
Weizenbaum, J. (1966). Eliza—a computer program for
the study of natural language communication between
man and machine. In Communications of the ACM,
volume 9(1), pages 36–45.
Xu, B. and Zhuang, Z. (2022). Survey on psychotherapy
chatbots. Concurrency and Computation: Practice
and Experience, 34(7):e6170.
An AI-Based Virtual Client for Educational Role-Playing in the Training of Online Counselors
117