
Belay, M. A., Blakseth, S. S., Rasheed, A., and Salvo Rossi,
P. (2023). Unsupervised anomaly detection for iot-
based multivariate time series: Existing solutions, per-
formance analysis and future directions. Sensors,
23(5):2844.
Bhoomika, A., Chitta, S. N. S., Laxmisetti, K., and Sirisha,
B. (2023). Time series forecasting and point anomaly
detection of sensor signals using lstm neural network
architectures. In 2023 10th International Conference
on Computing for Sustainable Global Development
(INDIACom), pages 1257–1262.
Calikus, E., Nowaczyk, S., Bouguelia, M.-R., and Dikmen,
O. (2022). Wisdom of the contexts: active ensemble
learning for contextual anomaly detection. Data Min-
ing and Knowledge Discovery, 36(6):2410–2458.
Carmona, C. U., Aubet, F.-X., Flunkert, V., and Gasthaus, J.
(2021). Neural contextual anomaly detection for time
series. arXiv preprint arXiv:2107.07702.
Chevrot, A., Vernotte, A., and Legeard, B. (2022). Cae:
Contextual auto-encoder for multivariate time-series
anomaly detection in air transportation. Computers &
Security, 116:102652.
Chollet, F. et al. (2015). Keras: deep learning library for
theano and tensorflow. 2015.
Dai, W., Liu, X., Heller, A., and Nielsen, P. S. (2021). Smart
meter data anomaly detection using variational recur-
rent autoencoders with attention. In International
Conference on Intelligent Technologies and Applica-
tions, pages 311–324. Springer.
Golmohammadi, K. and Zaiane, O. R. (2015). Time se-
ries contextual anomaly detection for detecting mar-
ket manipulation in stock market. In 2015 IEEE in-
ternational conference on data science and advanced
analytics (DSAA), pages 1–10. IEEE.
Hayes, M. A. and Capretz, M. A. (2015). Contextual
anomaly detection framework for big sensor data.
Journal of Big Data, 2(1):1–22.
Hela, S., Amel, B., and Badran, R. (2018). Early anomaly
detection in smart home: A causal association rule-
based approach. Artificial intelligence in medicine,
91:57–71.
Kosek, A. M. (2016). Contextual anomaly detection for
cyber-physical security in smart grids based on an ar-
tificial neural network model. In 2016 Joint Workshop
on Cyber-Physical Security and Resilience in Smart
Grids (CPSR-SG), pages 1–6. IEEE.
Lee, M.-C. and Lin, J.-C. (2023a). Repad2: Real-time,
lightweight, and adaptive anomaly detection for open-
ended time series. arXiv preprint arXiv:2303.00409.
Lee, M.-C. and Lin, J.-C. (2023b). Rola: A real-time online
lightweight anomaly detection system for multivariate
time series. arXiv preprint arXiv:2305.16509.
Lee, M.-C., Lin, J.-C., and Gran, E. G. (2021). Salad:
Self-adaptive lightweight anomaly detection for real-
time recurrent time series. In 2021 IEEE 45th An-
nual Computers, Software, and Applications Confer-
ence (COMPSAC), pages 344–349. IEEE.
Li, G. and Jung, J. J. (2023). Deep learning for anomaly de-
tection in multivariate time series: Approaches, appli-
cations, and challenges. Information Fusion, 91:93–
102.
Matar, M., Xia, T., Huguenard, K., Huston, D., and Wshah,
S. (2023). Multi-head attention based bi-lstm for
anomaly detection in multivariate time-series of wsn.
In 2023 IEEE 5th International Conference on Artifi-
cial Intelligence Circuits and Systems (AICAS), pages
1–5.
Nizam, H., Zafar, S., Lv, Z., Wang, F., and Hu, X. (2022).
Real-time deep anomaly detection framework for mul-
tivariate time-series data in industrial iot. IEEE Sen-
sors Journal, 22(23):22836–22849.
Pasini, K., Khouadjia, M., Sam
´
e, A., Tr
´
epanier, M., and
Oukhellou, L. (2022). Contextual anomaly detection
on time series: A case study of metro ridership analy-
sis. Neural Computing and Applications, pages 1–25.
Raihan, A. S. and Ahmed, I. (2023). A bi-lstm au-
toencoder framework for anomaly detection–a case
study of a wind power dataset. arXiv preprint
arXiv:2303.09703.
Ren, H., Xu, B., Wang, Y., Yi, C., Huang, C., Kou, X., Xing,
T., Yang, M., Tong, J., and Zhang, Q. (2019). Time-
series anomaly detection service at microsoft. In Pro-
ceedings of the 25th ACM SIGKDD international con-
ference on knowledge discovery & data mining, pages
3009–3017.
Velasco-Gallego, C. and Lazakis, I. (2022). Radis: A real-
time anomaly detection intelligent system for fault di-
agnosis of marine machinery. Expert Systems with Ap-
plications, 204:117634.
Wei, Y., Jang-Jaccard, J., Xu, W., Sabrina, F., Camtepe,
S., and Boulic, M. (2023). Lstm-autoencoder-based
anomaly detection for indoor air quality time-series
data. IEEE Sensors Journal, 23(4):3787–3800.
Yu, X., Lu, H., Yang, X., Chen, Y., Song, H., Li, J., and Shi,
W. (2020). An adaptive method based on contextual
anomaly detection in internet of things through wire-
less sensor networks. International Journal of Dis-
tributed Sensor Networks, 16(5):1550147720920478.
IoTBDS 2024 - 9th International Conference on Internet of Things, Big Data and Security
96