Ferracuti, N., Norscini, C., Frontoni, E [E.], Gabellini, P., 
Paolanti,  M.,  &  Placidi,  V.  (2019).  A  business 
application  of  RTLS  technology  in  Intelligent  Retail 
Environment: Defining the shopper's preferred path and 
its segmentation. In Journal of Retailing and Consumer 
Services, 47, 184–194. 
Foley, É., & Guillemette, M. G. (2010). What is Business 
Intelligence?  In  International Journal of Business 
Intelligence Research, 1(4), 1–28. 
Guha,  A.,  Grewal,  D.,  Kopalle,  P.  K.,  Haenlein,  M., 
Schneider, M. J., Jung, H., Moustafa, R., Hegde, D. R., 
& Hawkins, G. (2021). How artificial intelligence will 
affect  the  future  of  retailing.  In  Journal of Retailing, 
97(1), 28–41. 
Haertel, C., Pohl, M., Nahhas, A., Staegemann, D., & 
Turowski,  K.  (2023).  A  Survey  of  Technology 
Selection  Approaches  for  Data  Science  Projects.  In 
AMCIS 2023. 
Huddleston, P. T., Behe, B. K., Driesener, C., & Minahan, 
S.  (2018).  Inside-outside:  Using  eye-tracking  to 
investigate  search-choice  processes  in  the  retail 
environment.  In  Journal of Retailing and Consumer 
Services, 43, 85–93. 
Jabłonowska, A., Kuziemski, M., Nowak, A. M., Micklitz, 
H.‑W., Pałka, P., & Sartor, G. (2018). Consumer Law 
and  Artificial  Intelligence:  Challenges  to  the  EU 
Consumer  Law  and  Policy  Stemming  from  the 
Business' Use of Artificial Intelligence - Final report of 
the ARTSY project. In SSRN Electronic Journal. 
Jiang, Y., Li, X [Xiang], Luo, H., Yin, S., & Kaynak, O. 
(2022).  Quo  vadis  artificial  intelligence?  In  Discover 
Artificial Intelligence, 2(1), Article 4. 
Kahn,  B.  E.,  Inman,  J.  J.,  &  Verhoef,  P.  C.  (2018). 
Introduction to  Special  Issue:  Consumer  Response  to 
the  Evolving  Retailing  Landscape.  In  Journal of the 
Association for Consumer Research, 3(3), 255–259. 
Kaur,  J.,  Arora,  V.,  &  Bali,  S.  (2020).  Influence  of 
technological  advances  and  change  in  marketing 
strategies  using  analytics  in  retail  industry.  In 
International Journal of System Assurance Engineering 
and Management, 11(5), 953–961. 
Kitchenham,  B.,  &  Charters,  S.  (2007).  Guidelines for 
performing Systematic Literature Reviews in Software 
Engineering: Technical report, Version 2.3 EBSE 
Technical Report. 
Kopalle, P. K., Gangwar, M., Kaplan, A., Ramachandran, 
D., Reinartz, W., & Rindfleisch, A. (2022). Examining 
artificial intelligence (AI) technologies in marketing via 
a  global  lens:  Current  trends  and  future  research 
opportunities. In International Journal of Research in 
Marketing, 39(2), 522–540. 
Larson,  D.,  &  Chang,  V.  (2016).  A  Review  and  Future 
Direction of Agile, Business Intelligence, Analytics and 
Data Science. In International Journal of Information 
Management 36(5). 
Liciotti,  D.,  Frontoni,  E  [Emanuele],  Mancini,  A.,  & 
Zingaretti, P. (2017). Pervasive System for Consumer 
Behaviour Analysis in Retail Environments. In Lecture 
Notes in Computer Science. Video Analytics. Face and 
Facial Expression Recognition and Audience 
Measurement. Springer International Publishing. 
Martinez, I., Viles, E., & Olaizola, I. G. (2021). Data 
Science Methodologies: Current Challenges and Future 
Approaches. In Big Data Research 24. 
Medeiros,  M.  M.  de,  Hoppen,  N.,  &  Maçada,  A.  C.  G. 
(2020). Data science for business: benefits, challenges 
and opportunities. In The Bottom Line, 33(2), 149–163. 
Muslikhin, M., Horng, J.‑R., Yang, S.‑Y., Wang, M.‑S., & 
Awaluddin, B.‑A. (2021). An Artificial Intelligence of 
Things-Based Picking Algorithm for Online Shop in the 
Society 5.0's Context. In Sensors (Basel, Switzerland), 
21(8). 
Nair,  M.  M.,  Tyagi,  A.  K.,  &  Sreenath,  N.  (2021).  The 
Future  with  Industry  4.0  at  the  Core  of  Society  5.0: 
Open Issues, Future Opportunities and Challenges. In 
2021 International Conference on Computer 
Communication and Informatics (ICCCI). IEEE. 
Newman,  R.,  Chang,  V.,  Walters,  R.  J.,  &  Wills,  G.  B. 
(2016).  Model  and  experimental  development  for 
Business  Data  Science.  In  International Journal of 
Information Management, 36(4), 607–617. 
Nielsen, O. B. (2017). A Comprehensive Review of Data 
Governance  Literature.  In  Selected Papers of the 
IRIS(Issue Nr 8). 
Saltz,  J.,  &  Krasteva,  I.  (2022).  Current  approaches  for 
executing  big  data  science  projects  -  a  systematic 
literature review. In PeerJ Computer Science, 8(e862). 
Saltz, J., & Shamshurin, I. (2016). Big data team process 
methodologies:  A  literature  review  and  the 
identification of key factors for a project's success. In 
2016 IEEE International Conference on Big Data (Big 
Data). IEEE. 
VentureBeat. (2019). Why do 87% of data science projects 
never make it into production? https://venturebeat.com/ 
2019/07/19/why-do-87-of-data-science-projects-never-
make-it-into-production/ 
Waller,  M.  A.,  &  Fawcett,  S.  E.  (2013).  Data  Science, 
Predictive Analytics, and Big Data: A Revolution That 
Will Transform Supply Chain Design and Management. 
In Journal of Business Logistics, 34(2), 77–84. 
Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J., Dubey, 
R., & Childe, S. J. (2017). Big data analytics and firm 
performance:  Effects  of  dynamic  capabilities.  In 
Journal of Business Research, 70, 356–365. 
Xiao, L., Li, X [Xiaofeng], & Zhang, Y. (2023). Exploring 
the factors influencing consumer engagement behavior 
regarding  short-form  video  advertising:  A  big  data 
perspective.  In  Journal of Retailing and Consumer 
Services, 70
, 103170. 
Yin, S., & Kaynak, O. (2015). Big data for modern industry: 
challenges and trends [point of view]. In Proceedings 
of the IEEE, 103(2), 143–146. 
Zhang, H., Li, Y., Ai, Q., Luo, Y., Wen, Y., Jin, Y., & Ta, 
N. B. D. (2020). Hysia: Serving DNN-Based Video-to-
Retail  Applications  in  Cloud.  In  Proceedings of the 
28th ACM International Conference on Multimedia. 
ACM.