Ferracuti, N., Norscini, C., Frontoni, E [E.], Gabellini, P.,
Paolanti, M., & Placidi, V. (2019). A business
application of RTLS technology in Intelligent Retail
Environment: Defining the shopper's preferred path and
its segmentation. In Journal of Retailing and Consumer
Services, 47, 184–194.
Foley, É., & Guillemette, M. G. (2010). What is Business
Intelligence? In International Journal of Business
Intelligence Research, 1(4), 1–28.
Guha, A., Grewal, D., Kopalle, P. K., Haenlein, M.,
Schneider, M. J., Jung, H., Moustafa, R., Hegde, D. R.,
& Hawkins, G. (2021). How artificial intelligence will
affect the future of retailing. In Journal of Retailing,
97(1), 28–41.
Haertel, C., Pohl, M., Nahhas, A., Staegemann, D., &
Turowski, K. (2023). A Survey of Technology
Selection Approaches for Data Science Projects. In
AMCIS 2023.
Huddleston, P. T., Behe, B. K., Driesener, C., & Minahan,
S. (2018). Inside-outside: Using eye-tracking to
investigate search-choice processes in the retail
environment. In Journal of Retailing and Consumer
Services, 43, 85–93.
Jabłonowska, A., Kuziemski, M., Nowak, A. M., Micklitz,
H.‑W., Pałka, P., & Sartor, G. (2018). Consumer Law
and Artificial Intelligence: Challenges to the EU
Consumer Law and Policy Stemming from the
Business' Use of Artificial Intelligence - Final report of
the ARTSY project. In SSRN Electronic Journal.
Jiang, Y., Li, X [Xiang], Luo, H., Yin, S., & Kaynak, O.
(2022). Quo vadis artificial intelligence? In Discover
Artificial Intelligence, 2(1), Article 4.
Kahn, B. E., Inman, J. J., & Verhoef, P. C. (2018).
Introduction to Special Issue: Consumer Response to
the Evolving Retailing Landscape. In Journal of the
Association for Consumer Research, 3(3), 255–259.
Kaur, J., Arora, V., & Bali, S. (2020). Influence of
technological advances and change in marketing
strategies using analytics in retail industry. In
International Journal of System Assurance Engineering
and Management, 11(5), 953–961.
Kitchenham, B., & Charters, S. (2007). Guidelines for
performing Systematic Literature Reviews in Software
Engineering: Technical report, Version 2.3 EBSE
Technical Report.
Kopalle, P. K., Gangwar, M., Kaplan, A., Ramachandran,
D., Reinartz, W., & Rindfleisch, A. (2022). Examining
artificial intelligence (AI) technologies in marketing via
a global lens: Current trends and future research
opportunities. In International Journal of Research in
Marketing, 39(2), 522–540.
Larson, D., & Chang, V. (2016). A Review and Future
Direction of Agile, Business Intelligence, Analytics and
Data Science. In International Journal of Information
Management 36(5).
Liciotti, D., Frontoni, E [Emanuele], Mancini, A., &
Zingaretti, P. (2017). Pervasive System for Consumer
Behaviour Analysis in Retail Environments. In Lecture
Notes in Computer Science. Video Analytics. Face and
Facial Expression Recognition and Audience
Measurement. Springer International Publishing.
Martinez, I., Viles, E., & Olaizola, I. G. (2021). Data
Science Methodologies: Current Challenges and Future
Approaches. In Big Data Research 24.
Medeiros, M. M. de, Hoppen, N., & Maçada, A. C. G.
(2020). Data science for business: benefits, challenges
and opportunities. In The Bottom Line, 33(2), 149–163.
Muslikhin, M., Horng, J.‑R., Yang, S.‑Y., Wang, M.‑S., &
Awaluddin, B.‑A. (2021). An Artificial Intelligence of
Things-Based Picking Algorithm for Online Shop in the
Society 5.0's Context. In Sensors (Basel, Switzerland),
21(8).
Nair, M. M., Tyagi, A. K., & Sreenath, N. (2021). The
Future with Industry 4.0 at the Core of Society 5.0:
Open Issues, Future Opportunities and Challenges. In
2021 International Conference on Computer
Communication and Informatics (ICCCI). IEEE.
Newman, R., Chang, V., Walters, R. J., & Wills, G. B.
(2016). Model and experimental development for
Business Data Science. In International Journal of
Information Management, 36(4), 607–617.
Nielsen, O. B. (2017). A Comprehensive Review of Data
Governance Literature. In Selected Papers of the
IRIS(Issue Nr 8).
Saltz, J., & Krasteva, I. (2022). Current approaches for
executing big data science projects - a systematic
literature review. In PeerJ Computer Science, 8(e862).
Saltz, J., & Shamshurin, I. (2016). Big data team process
methodologies: A literature review and the
identification of key factors for a project's success. In
2016 IEEE International Conference on Big Data (Big
Data). IEEE.
VentureBeat. (2019). Why do 87% of data science projects
never make it into production? https://venturebeat.com/
2019/07/19/why-do-87-of-data-science-projects-never-
make-it-into-production/
Waller, M. A., & Fawcett, S. E. (2013). Data Science,
Predictive Analytics, and Big Data: A Revolution That
Will Transform Supply Chain Design and Management.
In Journal of Business Logistics, 34(2), 77–84.
Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J., Dubey,
R., & Childe, S. J. (2017). Big data analytics and firm
performance: Effects of dynamic capabilities. In
Journal of Business Research, 70, 356–365.
Xiao, L., Li, X [Xiaofeng], & Zhang, Y. (2023). Exploring
the factors influencing consumer engagement behavior
regarding short-form video advertising: A big data
perspective. In Journal of Retailing and Consumer
Services, 70
, 103170.
Yin, S., & Kaynak, O. (2015). Big data for modern industry:
challenges and trends [point of view]. In Proceedings
of the IEEE, 103(2), 143–146.
Zhang, H., Li, Y., Ai, Q., Luo, Y., Wen, Y., Jin, Y., & Ta,
N. B. D. (2020). Hysia: Serving DNN-Based Video-to-
Retail Applications in Cloud. In Proceedings of the
28th ACM International Conference on Multimedia.
ACM.