REFERENCES
Ahmed, I., Ahmad, M., Khan, F.A., Asif, M. (2020).
Comparison of deep-learning-based segmentation
models: Using top view person images. IEEE Access,
8, 136361-136373.
Akhmalluddin et al. (2023). U-NET Semantic
Segmentation of High-Resolution Imagery Using
ArcgGIS Pro Deep Learning Analyst. presented at the
Asian Conference on Remote Sensing (ACRS),
Nangang, Taiwan. 2023.
Brownlee, J. (2022) Difference between a batch and an
epoch in a neural network, Machine
LearningMastery.com. Available at: https://machine
learningmastery.com/difference-between-a-batch-and-
an-epoch/ (Accessed: 13 March 2024).
Chen, L., Papandreou, G., Kokkinos, I., Murphy, M.
(2016). A Yuille Semantic Image Segmentation with
Deep Convolutional Nets and Fully Connected CRFs,
arXiv:1412.7062 2016.
Elharrouss, O., Akbari, Y., Almaadeed, N., & Al-Maadeed,
S. (2022). Backbones-review: Feature extraction
networks for deep learning and deep reinforcement
learning approaches. arXiv preprint arXiv:2206.08016.
ESRI (2020). How DeepLabV3 Work. Access at
https://developers.arcgis.com/python/guide/how-deep
labv3-works/
Firdaus, R.R., Leong Tan, M., Rahmat, S.R., Senevi
Gunaratne, M. (2020). Paddy, rice and food security in
Malaysia: A review of climate change impacts. Cogent
Social Sciences, Vol. 6(1), pp. 1818373
Ibrahim, M. (2023) A deep dive into learning curves in
machine learning, W&B. Available at:
https://wandb.ai/mostafaibrahim17/ml-articles/reports/
A-Deep-Dive-Into-Learning-Curves-in-Machine-Lear
ning--Vmlldzo0NjA1ODY0
Jagtap, S., Trollman, H., Trollman, F., Garcia-Garcia, G.,
Parra-López, C., Duong, L., Martindale, W., Munekata,
P.E., Lorenzo, J.M., Hdaifeh, A., Hassoun, A. (2022).
The Russia-Ukraine conflict: Its implications for the
global food supply chains. Foods, 11(14), p.2098.
Jensen, John R. (2016). Introductory Digital Image
Processing: A Remote Sensing Perspective. 4th ed.
Pearson.
Lin, F., Li, X., Jia, N., Feng, F., Huang, H., Huang, J., Fan,
S., Ciais, P., Song, X.P. (2023). The impact of Russia-
Ukraine conflict on global food security. Global Food
Security, 36, p.100661.
Maiti, A., Oude Elberink, S. J., & Vosselman, G. (2022).
Effect of label noise in semantic segmentation of high
resolution aerial images and height data. ISPRS Annals
of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, 2, 275-282.
Omar, S.C., Shaharudin, A., Tumin, S.A. (2019). The status
of the paddy and rice industry in Malaysia. Khazanah
Research Institute. Kuala Lumpur. Malaysia.
Production, and Yield. Retrieved From http://www.
fao.org/3/ca6408en/ca6408en.pdf
Quan, B., Liu, B., Fu, D., Chen, H., & Liu, X. (202).
Improved deeplabv3 for better road segmentation in
remote sensing images. In 2021 International
Conference on Computer Engineering and Artificial
Intelligence (ICCEAI) (pp. 331-334). IEEE.
Riva, W. (2023) Interpretation of loss and accuracy for a
machine learning model, Baeldung on Computer
Science. Available at: https://www.baeldung.com/
cs/ml-loss-accuracy (Accessed: 10 March 2024).
Sharifzadeh, S., Tata, J., Sharifzadeh, H., & Tan, B. (2020).
Farm area segmentation in satellite images using
deeplabv3+ neural networks. In Data Management
Technologies and Applications: 8th International
Conference, DATA 2019, Prague, Czech Republic.
Sistem Maklumat Geospatial Tanaman Padi,Retrieved
August 18 2023. http://makgeopadi.mysa.gov.my/jelap
ang/_main
Siti Masayu Yahaya et.al (2015) "Remote Sensing and GIS
Web- Based System for Paddy Cultivation
Management in Malaysia," presented at the Asian
Conference on Remote Sensing (ACRS), Manila,
Philippines, 2015.
Tey, J.Y.S., Radam, A. (2011). Demand patterns of rice
imports in Malaysia: Implications for food security.
Food Security, 3, 253-261.
Wicaksana, K.S., Ramadhan, R.F. (2022). The Effect of the
Russia-Ukraine Crisis on Price Fluctuations and Trade
in Energy Sector in Indonesia. Jurnal Nasional
Pengelolaan Energi MigasZoom, 4(1), 6-18.