settings is essential to extend the usage of spatial KPIs
to a wider range of applications. Furthermore,
exploring other temporal KPIs and spatial KPIs is
also important to gain more insights in traffic
prediction evaluation. At last, the integration of
spatial KPIs with temporal KPIs is a critical step
towards a better evaluation of traffic prediction
models.
REFERENCES
Adepeju, M., Rosser, G., & Cheng, T. (2016). Novel
evaluation metrics for sparse spatio-temporal point
process hotspot predictions—A crime case study.
International Journal of Geographical Information
Science, 30(11), 2133–2154. https://doi.org/10.1080/
13658816.2016.1159684
Chen, C., Petty, K., Skabardonis, A., Varaiya, P., & Jia, Z.
(2001). Freeway Performance Measurement System:
Mining Loop Detector Data. Transportation Research
Record: Journal of the Transportation Research Board,
1748(1), 96–102. https://doi.org/10.3141/1748-12
Dietel, J. E. (2003). Recordkeeping integrity: Assessing
records’ content after Enron. Information Management
Journal, 37(3), 43–51. ProQuest Central; Social Science
Premium Collection.
Fisher, C. W., Lauria, E. J. M., & Matheus, C. C. (2009).
An Accuracy Metric: Percentages, Randomness, and
Probabilities. Journal of Data and Information Quality,
1(3), 16:1-16:21. https://doi.org/10.1145/1659225.165
9229
Geary, R. C. (1954). The Contiguity Ratio and Statistical
Mapping. The Incorporated Statistician, 5(3), 115–146.
https://doi.org/10.2307/2986645
Getis, A., & Ord, J. K. (1992). The Analysis of Spatial
Association by Use of Distance Statistics. Geographical
Analysis, 24(3), 189–206. https://doi.org/10.1111/
j.1538-4632.1992.tb00261.x
Guo, S., Lin, Y., Feng, N., Song, C., & Wan, H. (2019).
Attention Based Spatial-Temporal Graph
Convolutional Networks for Traffic Flow Forecasting.
Proceedings of the AAAI Conference on Artificial
Intelligence, 33(01), Article 01. https://doi.org/10.16
09/aaai.v33i01.3301922
Korecki, M., Dailisan, D., & Helbing, D. (2023). How Well
Do Reinforcement Learning Approaches Cope With
Disruptions? The Case of Traffic Signal Control. IEEE
Access, 11, 36504–36515. https://doi.org/10.1109/
ACCESS.2023.3266644
Li, L., Tsui, K.-L., & Zhao, Y. (2022). An Overview and
General Framework for Spatiotemporal Modeling and
Applications in Transportation and Public Health. In A.
Steland & K.-L. Tsui (Eds.), Artificial Intelligence, Big
Data and Data Science in Statistics: Challenges and
Solutions in Environmetrics, the Natural Sciences and
Technology (pp. 195–226). Springer International
Publishing. https://doi.org/10.1007/978-3-031-07155-
3_8
Mehdiyev, N., Enke, D., Fettke, P., & Loos, P. (2016).
Evaluating Forecasting Methods by Considering
Different Accuracy Measures. Procedia Computer
Science, 95, 264–271. https://doi.org/10.1016/j.proc
s.2016.09.332
Moran, P. A. P. (1950). Notes on Continuous Stochastic
Phenomena. Biometrika, 37(1/2), 17–23. https://
doi.org/10.2307/2332142
Song, C., Lin, Y., Guo, S., & Wan, H. (2020). Spatial-
Temporal Synchronous Graph Convolutional
Networks: A New Framework for Spatial-Temporal
Network Data Forecasting. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(01), Article
01. https://doi.org/10.1609/aaai.v34i01.5438
Tascikaraoglu, A. (2018). Evaluation of spatio-temporal
forecasting methods in various smart city applications.
Renewable and Sustainable Energy Reviews, 82, 424–
435. https://doi.org/10.1016/j.rser.2017.09.078
Wu, D., Gao, L., Chinazzi, M., Xiong, X., Vespignani, A.,
Ma, Y.-A., & Yu, R. (2021). Quantifying Uncertainty
in Deep Spatiotemporal Forecasting. Proceedings of the
27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, 1841–1851. https://doi.org/
10.1145/3447548.3467325