
Departments). These interviews serve a dual purpose.
Firstly, they contribute to the development of a gov-
ernance maturity model specifically tailored for the
French academic context. This model is partly based
on insights gained from these interviews. Secondly,
the interviews are instrumental in identifying effective
mechanisms for establishing a dynamic, multi-level
governance architecture, a crucial aspect for evolving
academic environments.
In the realm of governance, a pivotal focus should
be placed on data literacy. This concept extends be-
yond mere skill acquisition. It encompasses a broader
understanding and contextual application of data. It
involves cultivating a mindset that recognizes the
strategic value of data, encouraging individuals to
think critically about how data can be utilized effec-
tively within their specific roles and projects. This
aspect of data literacy is about developing a deeper,
more nuanced appreciation of data’s role in decision-
making, problem-solving, and innovation. It’s about
empowering individuals to not just use data tools and
techniques, but to understand the implications of data
in the broader context of their work, the organiza-
tion’s goals, and even societal impacts. This holistic
approach to data literacy facilitates a culture where
data is not just a tool, but a fundamental component
of strategic thinking and planning.
ACKNOWLEDGEMENTS
This work was supported by a French govern-
ment grant managed by the Agence Nationale de
la Recherche (ANR) under the “Investissements
d’avenir program”, reference ANR-20-IDES-0001.
REFERENCES
Abraham, R., Schneider, J., and vom Brocke, J. (2019).
Data governance: A conceptual framework, structured
review, and research agenda. International Journal of
Information Management, 49:424–438.
Alhassan, I., Sammon, D., and Daly, M. (2018). Data gover-
nance activities: a comparison between scientific and
practice-oriented literature. Journal of Enterprise In-
formation Management, 31(2):300–316.
Bouchez, J.-P. (2014). Autour de “l’économie du savoir”:
Ses composantes, ses dynamiques et ses enjeux.
Savoirs, 34(1):945.
Chatelain-Ponroy, S., Mignot Gerard, S., Musselin, C., and
Sponem, S. (2012). La gouvernance des universités
françaises. Research report, HEC Montréal ; Cen-
tre de sociologie des organisations ; Conservatoire na-
tional des arts et métiers ; Université Paris-Est Créteil.
Gagnon-Turcotte, S., Sculthorp, M., and Coutts, S. (2021).
Les partenariats de données numériques: mettre les
bases d’une gouvernance de données collaboratives
dans l’intérêt du public. Technical report, Laboratoire
d’innovation urbaine de Montréal.
Jim, C. K. and Chang, H. (2018). The current state of data
governance in higher education. Proceedings of the
Association for Information Science and Technology,
55(1):198–206.
Madison, M. J. (2020). Data governance and the emerging
university. In In Research Handbook on Intellectual
Property and Technology Transfer, pages 364–390.
Edward Elgar Publishing.
Mignot-Gérard, S., Chatelain-Ponroy, S., Sponem, S., and
Musselin, C. (2023). Kaleidoscopic collegiality and
the use of performance research metrics. the case of
french universities. Higher Education, 85:887–918.
Ministère de l’Enseignement Supérieur, de la Recherche et
de l’Innovation (2021). Politique des données, des
algorithmes et des codes sources : Feuille de route
2021-2024. Technical report, MESRI.
Musselin, C. (2006). Are universities specific organisa-
tions? In Krücken, G., Kosmützky, A., and Torka,
M., editors, Towards a Multiversity? Universities be-
tween Global Trends and National Traditions, pages
63–84. Bielefeld: transcript Verlag.
Musselin, C. (2017). La grande course des universités.
Presses de Sciences Po.
Pierronnet, R. and Blanchard, A. (2021). La donnée : un
enjeu managérial à saisir pour les universités. In Prox-
imités et territoires aux défis du management public.
Association Internationale de Recherche en Manage-
ment Public (AIRMAP).
Seiner, R. S. (2014). Non-Invasive Data Governance: The
Path of Least Resistance and Greatest Success. Tech-
nics Publications.
Verdi, U. and Le Deuff, O. (2020). La data literacy
distribuée: Périmètres définitionnels, origines docu-
mentaires, perspectives réticulaires. Les Cahiers du
numérique, 16:137 – 173.
Vinokur, A. (2008). Vous avez dit “autonomie” ? Mouve-
ments, 55-56:72 – 81.
Wessels, B., Finn, R., Wadhwa, K., and Sveinsdottir, T.
(2017). Open Data and the Knowledge Society. Am-
sterdam University Press.
ICEIS 2024 - 26th International Conference on Enterprise Information Systems
738