
learning models. International Journal of Environ-
mental Research and Public Health, 19(19):12378.
Duvier, C., Neagu, D., Oltean-Dumbrava, C., and Dickens,
D. (2018). Data quality challenges in the uk social
housing sector. International Journal of information
management, 38(1):196–200.
Egan, C. (2021). Improving Credit Default Prediction Us-
ing Explainable AI. PhD thesis, Dublin, National Col-
lege of Ireland.
Ehlers, A. P., Roy, S. B., Khor, S., Mandagani, P., Maria,
M., Alfonso-Cristancho, R., and Flum, D. R. (2017).
Improved risk prediction following surgery using ma-
chine learning algorithms. eGEMs, 5(2).
Ferdousi, R., Hossain, M. A., and El Saddik, A. (2021).
Early-stage risk prediction of non-communicable dis-
ease using machine learning in health cps. IEEE Ac-
cess, 9:96823–96837.
Hickman, P. (2021). Understanding social housing tenants’
rent payment behaviour: evidence from great britain.
Housing Studies, 36(2):235–257.
Hickman, P., Kemp, P. A., Reeve, K., and Wilson, I. (2017).
The impact of the direct payment of housing bene-
fit: evidence from great britain. Housing Studies,
32(8):1105–1126.
Holzinger, A., Biemann, C., Pattichis, C. S., and Kell,
D. B. (2017). What do we need to build explainable
ai systems for the medical domain? arXiv preprint
arXiv:1712.09923.
Irvine, A., Kemp, P. A., and Nice, K. (2007). Direct Pay-
ment of Housing Benefit: What Do Claimants Think?
Chartered Institute of Housing.
Johnson, S. and O’Halloran, A. (2017). Nudging your way
to reduced rent arrears.
Karthick, K., Aruna, S., Samikannu, R., Kuppusamy, R.,
Teekaraman, Y., Thelkar, A. R., et al. (2022). Im-
plementation of a heart disease risk prediction model
using machine learning. Computational and Mathe-
matical Methods in Medicine, 2022.
Lagasio, V., Pampurini, F., Pezzola, A., and Quaranta, A. G.
(2022). Assessing bank default determinants via ma-
chine learning. Information Sciences, 618:87–97.
Mariani, M. M., Perez-Vega, R., and Wirtz, J. (2022). Ai
in marketing, consumer research and psychology: A
systematic literature review and research agenda. Psy-
chology & Marketing, 39(4):755–776.
Neisen, M. and Geraskin, P. (2022). Improved credit default
prediction using machine learning and its impact on
risk-weighted assets of banks. Journal of AI, Robotics
& Workplace Automation, 2(1):49–62.
Rao, Q. and Frtunikj, J. (2018). Deep learning for self-
driving cars: Chances and challenges. In Proceedings
of the 1st international workshop on software engi-
neering for AI in autonomous systems, pages 35–38.
Sawhney, R., Malik, A., Sharma, S., and Narayan, V.
(2023). A comparative assessment of artificial intelli-
gence models used for early prediction and evaluation
of chronic kidney disease. Decision Analytics Jour-
nal, 6:100169.
Shaheen, M. Y. (2021). Applications of artificial intel-
ligence (ai) in healthcare: A review. ScienceOpen
Preprints.
Shaheen, S. K. and Elfakharany, E. (2018). Predictive ana-
lytics for loan default in banking sector using machine
learning techniques. In 2018 28th International Con-
ference on Computer Theory and Applications (IC-
CTA), pages 66–71. IEEE.
Shinde, S. A. and Rajeswari, P. R. (2018). Intelligent health
risk prediction systems using machine learning: a re-
view. International Journal of Engineering & Tech-
nology, 7(3):1019–1023.
SK, S. and P, A. (2017). A machine learning ensemble clas-
sifier for early prediction of diabetic retinopathy. Jour-
nal of Medical Systems, 41:1–12.
Stone, M. E. (2003). Social housing in the UK and US:
Evolution, issues and prospects. Goldsmiths College,
Centre for Urban Community Research London.
The Guinness Partnership, C. o. A. i. t. S. E. and Tickell, C.
(2015). Tenancy sustainment: Summary report may
2015.
Turiel, J. D. and Aste, T. (2019). P2p loan acceptance and
default prediction with artificial intelligence. arXiv
preprint arXiv:1907.01800.
Weitz, K., Schiller, D., Schlagowski, R., Huber, T., and
Andr
´
e, E. (2019). ” do you trust me?” increasing user-
trust by integrating virtual agents in explainable ai in-
teraction design. In Proceedings of the 19th ACM In-
ternational Conference on Intelligent Virtual Agents,
pages 7–9.
Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q.,
Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Yu,
P. S., et al. (2008). Top 10 algorithms in data mining.
Knowledge and information systems, 14:1–37.
Wu, Y.-T., Zhang, C.-J., Mol, B. W., Kawai, A., Li, C.,
Chen, L., Wang, Y., Sheng, J.-Z., Fan, J.-X., Shi, Y.,
et al. (2021). Early prediction of gestational diabetes
mellitus in the chinese population via advanced ma-
chine learning. The Journal of Clinical Endocrinology
& Metabolism, 106(3):e1191–e1205.
Embedding a Data-Driven Decision-Making Work Culture in a Social Housing Environment
811