
Ding, R., Zhou, H., Lou, J.-G., Zhang, H., Lin, Q., Fu,
Q., Zhang, D., and Xie, T. (2015). Log2: A Cost-
Aware logging mechanism for performance diagno-
sis. In 2015 USENIX Annual Technical Conference
(USENIX ATC 15), pages 139–150.
Goldstein, M., Raz, D., and Segall, I. (2017). Experience
report: Log-based behavioral differencing. In 2017
IEEE 28th International Symposium on Software Re-
liability Engineering (ISSRE), pages 282–293.
Hamooni, H., Debnath, B., Xu, J., Zhang, H., Jiang, G., and
Mueen, A. (2016). Logmine: Fast pattern recognition
for log analytics. In Proceedings of the 25th ACM In-
ternational on Conference on Information and Knowl-
edge Management, CIKM ’16, page 1573–1582.
He, P., Chen, Z., He, S., and Lyu, M. R. (2018). Char-
acterizing the natural language descriptions in soft-
ware logging statements. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated
Software Engineering, ASE ’18, page 178–189.
He, S., He, P., Chen, Z., Yang, T., Su, Y., and Lyu, M. R.
(2021). A survey on automated log analysis for relia-
bility engineering. ACM Comput. Surv., 54(6).
Howard, Y. M., Gruner, S., Gravell, A. M., Ferreira, C., and
Augusto, J. C. (2011). Model-based trace-checking.
ArXiv, abs/1111.2825.
Ilgun, K., Kemmerer, R., and Porras, P. (1995). State tran-
sition analysis: a rule-based intrusion detection ap-
proach. IEEE Transactions on Software Engineering,
21(3):181–199.
Inc., E. (2006). Espertech - complex event processing
streaming analytics.
Jayathilake, D. (2012). Towards structured log analysis.
In 2012 Ninth International Conference on Computer
Science and Software Engineering (JCSSE), pages
259–264.
Lee, D. and Yannakakis, M. (1996). Principles and methods
of testing finite state machines-a survey. Proceedings
of the IEEE, 84(8):1090–1123.
Li, H., Shang, W., and Hassan, A. E. (2018). Which
log level should developers choose for a new logging
statement? In 2018 IEEE 25th International Confer-
ence on Software Analysis, Evolution and Reengineer-
ing (SANER), pages 468–468.
Li, Z., Luo, C., Chen, T.-H., Shang, W., He, S., Lin, Q., and
Zhang, D. (2023). Did we miss something important?
studying and exploring variable-aware log abstraction.
In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), pages 830–842.
Liu, Z., Xia, X., Lo, D., Xing, Z., Hassan, A. E., and Li, S.
(2021). Which variables should i log? IEEE Transac-
tions on Software Engineering, 47(9):2012–2031.
Robots, M. I. (2023). Mir robots.
Sedki, I., Hamou-Lhadj, A., Ait-Mohamed, O., and
Ezzati-Jivan, N. (2023). Towards a classification
of log parsing errors. In 2023 IEEE/ACM 31st In-
ternational Conference on Program Comprehension
(ICPC), pages 84–88. IEEE Computer Society.
Shi, Y., Li, R., Li, R., and Xie, Y. (2011). Log analy-
sis for embedded real-time operating system based on
state machine. In 2011 International Conference on
Mechatronic Science, Electric Engineering and Com-
puter (MEC), pages 1306–1309.
Stearley, J., Ballance, R. A., and Bauman, L. E. (2012). A
state-machine approach to disambiguating supercom-
puter event logs.
Tan, J., Pan, X., Kavulya, S., Gandhi, R., and Narasimhan,
P. (2008). SALSA: Analyzing logs as StAte machines.
In First USENIX Workshop on the Analysis of System
Logs (WASL 08). USENIX Association.
Tsoni, S. (2019). Log differencing using state machines for
anomaly detection.
Wilson, P. (2016). Chapter 22 - finite state machines in vhdl
and verilog. In Wilson, P., editor, Design Recipes for
FPGAs (Second Edition), pages 305–309.
Yang, N., Cuijpers, P., Hendriks, D., Schiffelers, R.,
Lukkien, J., and Serebrenik, A. (2023). An interview
study of how developers use execution logs in embed-
ded software engineering. Empirical Software Engi-
neering, 28(43).
Yuan, D., Park, S., Huang, P., Liu, Y., Lee, M. M., Tang, X.,
Zhou, Y., and Savage, S. (2012). Be conservative: En-
hancing failure diagnosis with proactive logging. In
10th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 12), pages 293–306.
Yuan, D., Zheng, J., Park, S., Zhou, Y., and Savage,
S. (2011). Improving software diagnosability via
log enhancement. SIGARCH Comput. Archit. News,
39(1):3–14.
Zhang, T., Qiu, H., Castellano, G., Rifai, M., Chen, C., and
Pianese, F. (2023). System log parsing: A survey.
IEEE Transactions on Knowledge & Data Engineer-
ing, 35(08):8596–8614.
Zhao, X., Rodrigues, K., Luo, Y., Stumm, M., Yuan, D.,
and Zhou, Y. (2017). Log20: Fully automated opti-
mal placement of log printing statements under speci-
fied overhead threshold. In Proceedings of the 26th
Symposium on Operating Systems Principles, page
565–581.
Zhu, J., He, P., Fu, Q., Zhang, H., Lyu, M. R., and Zhang,
D. (2015). Learning to log: Helping developers make
informed logging decisions. In 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineer-
ing, volume 1, pages 415–425.
ICEIS 2024 - 26th International Conference on Enterprise Information Systems
88