Competition 2021 – Solver and Benchmark Descrip-
tions, volume B-2021-1 of Department of Computer
Science Report Series B. University of Helsinki.
Biere, A. and Kr
¨
oning, D. (2018). SAT-Based Model Check-
ing, pages 277–303. Springer International Publish-
ing, Cham.
Bradley, A. R. (2012). Understanding IC3. In SAT, volume
7317 of Lecture Notes in Computer Science, pages 1–
14. Springer.
Cabodi, G., Camurati, P., Palena, M., Pasini, P., and Ven-
draminetto, D. (2017). Interpolation-based learning
as a mean to speed-up bounded model checking (short
paper). In Cimatti, A. and Sirjani, M., editors, Soft-
ware Engineering and Formal Methods, pages 382–
387, Cham. Springer International Publishing.
Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pi-
store, M., Roveri, M., Sebastiani, R., and Tacchella,
A. (2002). NuSMV Version 2: An OpenSource Tool
for Symbolic Model Checking. In CAV 2002, volume
2404 of LNCS, Copenhagen, Denmark. Springer.
Clarke, E., Emerson, E., and Sifakis, J. (2009). Model
checking. Communications of the ACM, 52.
Clarke, E., McMillan, K., Campos, S., and Hartonas-
Garmhausen, V. (1996). Symbolic model checking.
In Alur, R. and Henzinger, T. A., editors, Computer
Aided Verification, pages 419–422, Berlin, Heidel-
berg. Springer Berlin Heidelberg.
Clarke, E. M. and Emerson, E. A. (1982). Design and syn-
thesis of synchronization skeletons using branching
time temporal logic. In Logics of Programs, Berlin,
Heidelberg. Springer Berlin Heidelberg.
Cook, S. A. (1971). The complexity of theorem proving
procedures. In Proceedings of the Third Annual ACM
Symposium, pages 151–158, New York. ACM.
Davis, M., Logemann, G., and Loveland, D. (1962). A ma-
chine program for theorem-proving. Commun. ACM.
Dreben, B. (1959). William craig. linear reasoning. a new
form of the herbrand-gentzen theorem. the journal of
symbolic logic, vol. 22 (1957), pp. 250–268. - william
craig. three uses of the herbrand-gentzen theorem in
relating model theory and proof theory. the journal of
symbolic logic, vol. 22 (1957), pp. 269–285. Journal
of Symbolic Logic, 24(3):243–244.
D’Silva, V. (2010). Propositional interpolation and abstract
interpretation. In Gordon, A. D., editor, Programming
Languages and Systems, pages 185–204, Berlin, Hei-
delberg. Springer Berlin Heidelberg.
Een, N., Mishchenko, A., and Brayton, R. (2011). Effi-
cient implementation of property directed reachabil-
ity. In 2011 Formal Methods in Computer-Aided De-
sign (FMCAD), pages 125–134.
E
´
en, N. and S
¨
orensson, N. (2003). An extensible sat-solver.
In International Conference on Theory and Applica-
tions of Satisfiability Testing.
Ganai, M., Gupta, A., Yang, Z., and Ashar, P. (2006). Effi-
cient distributed sat and sat-based distributed bounded
model checking. International Journal on Software
Tools for Technology Transfer, 8:387–396.
Hamadi, Y., Marques-Silva, J., and Wintersteiger, C.
(2011). Lazy decomposition for distributed decision
procedures. In Proceedings 10th International Work-
shop on Parallel and Distributed Methods in verifiCa-
tion (PDMC’11), volume 72, pages 43–54.
Holzmann, G. J. (2018). Explicit-state model checking. In
Clarke, E. M., Henzinger, T. A., Veith, H., and Bloem,
R., editors, Handbook of Model Checking, pages 153–
171, Cham. Springer International Publishing.
Kheireddine, A., Renault, E., and Baarir, S. (2023). To-
wards better heuristics for solving bounded model
checking problems. Constraints.
Le Frioux, L., Baarir, S., Sopena, J., and Kordon, F.
(2017). PaInleSS: a framework for parallel SAT solv-
ing. In Proceedings of the 20th International Con-
ference on Theory and Applications of Satisfiability
Testing (SAT’17), volume 10491 of Lecture Notes in
Computer Science, pages 233–250. Springer, Cham.
Manna, Z. and Pnueli, A. (1990). A hierarchy of temporal
properties (invited paper, 1989). In PODC ’90.
McMillan, K. L. (1993). The SMV System, pages 61–85.
Springer US, Boston, MA.
McMillan, K. L. (2003). Interpolation and sat-based model
checking. In Hunt, W. A. and Somenzi, F., editors,
Computer Aided Verification, pages 1–13, Berlin, Hei-
delberg. Springer Berlin Heidelberg.
Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L.,
and Malik, S. (2001). Chaff: Engineering an efficient
sat solver. In DAC, pages 530–535. ACM.
Rozier, K. Y. (2011). Survey: Linear temporal logic sym-
bolic model checking. Comput. Sci. Rev.
Sery, O., Fedyukovich, G., and Sharygina, N. (2012).
Interpolation-based function summaries in bounded
model checking. In Eder, K., Lourenc¸o, J., and She-
hory, O., editors, Hardware and Software: Verifica-
tion and Testing, pages 160–175, Berlin, Heidelberg.
Springer Berlin Heidelberg.
Silva, J. a. P. M. and Sakallah, K. A. (1997). Grasp—a
new search algorithm for satisfiability. In Proceedings
of the 1996 IEEE/ACM International Conference on
Computer-Aided Design, ICCAD ’96, page 220–227,
USA. IEEE Computer Society.
Simon, L. and Audemard, G. (2009). Predicting Learnt
Clauses Quality in Modern SAT Solver. In Twenty-
first International Joint Conference on Artificial Intel-
ligence (IJCAI’09), Pasadena, United States.
Wieringa, S. (2011). On incremental satisfiability and
bounded model checking. CEUR Workshop Proceed-
ings, 832:13–21.
Zarpas, E. (2004). Simple yet efficient improvements of
sat based bounded model checking. In Hu, A. J. and
Martin, A. K., editors, Formal Methods in Computer-
Aided Design, pages 174–185, Berlin, Heidelberg.
Springer Berlin Heidelberg.
Zhao, Y., Malik, S., Moskewicz, M., and Madigan, C.
(2001). Accelerating boolean satisfiability through ap-
plication specific processing. In Proceedings of the
14th International Symposium on Systems Synthesis,
ISSS ’01, page 244–249, New York, NY, USA. Asso-
ciation for Computing Machinery.
ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering
614