
Freund, Y. and Schapire, R. E. (1997). A decision-theoretic
generalization of on-line learning and an application
to boosting. Journal of computer and system sciences,
55(1):119–139.
Goyal, S. and Bhatia, P. K. (2021). Software fault predic-
tion using lion optimization algorithm. International
Journal of Information Technology, 13:2185–2190.
Holland, J. H. (1992). Genetic algorithms. Scientific amer-
ican, 267(1):66–73.
Islam, M. J., Ahmad, S., Haque, F., Reaz, M. B. I., Bhuiyan,
M. A. S., and Islam, M. R. (2022). Application of
min-max normalization on subject-invariant emg pat-
tern recognition. IEEE Transactions on Instrumenta-
tion and Measurement, 71:1–12.
Jin, C. and Jin, S.-W. (2015). Prediction approach of soft-
ware fault-proneness based on hybrid artificial neu-
ral network and quantum particle swarm optimization.
Applied Soft Computing, 35:717–725.
Johnson, P., Vandewater, L., Wilson, W., Maruff, P., Savage,
G., Graham, P., Macaulay, L. S., Ellis, K. A., Szoeke,
C., Martins, R. N., et al. (2014). Genetic algorithm
with logistic regression for prediction of progression
to alzheimer’s disease. BMC bioinformatics, 15:1–14.
Kang, J., Kwon, S., Ryu, D., and Baik, J. (2021). Haspo:
Harmony search-based parameter optimization for
just-in-time software defect prediction in maritime
software. Applied Sciences, 11(5):2002.
Kramer, O. and Kramer, O. (2013). K-nearest neighbors.
Dimensionality reduction with unsupervised nearest
neighbors, pages 13–23.
Manita, G., Chhabra, A., and Korbaa, O. (2023). Efficient
e-mail spam filtering approach combining logistic re-
gression model and orthogonal atomic orbital search
algorithm. Applied Soft Computing, 144:110478.
Manita, G., Khanchel, R., and Limam, M. (2012). Consen-
sus functions for cluster ensembles. Applied Artificial
Intelligence, 26(6):598–614.
Mirjalili, S., Mirjalili, S. M., and Lewis, A. (2014). Grey
wolf optimizer. Advances in engineering software,
69:46–61.
Natekin, A. and Knoll, A. (2013). Gradient boosting ma-
chines, a tutorial. Frontiers in neurorobotics, 7:21.
Niu, Y., Tian, Z., Zhang, M., Cai, X., and Li, J. (2018).
Adaptive two-svm multi-objective cuckoo search al-
gorithm for software defect prediction. Interna-
tional Journal of Computing Science and Mathemat-
ics, 9(6):547–554.
Panda, M. and Azar, A. T. (2021). Hybrid multi-objective
grey wolf search optimizer and machine learning ap-
proach for software bug prediction. In Handbook of
Research on Modeling, Analysis, and Control of Com-
plex Systems, pages 314–337. IGI Global.
Qasim, O. S. and Algamal, Z. Y. (2018). Feature selec-
tion using particle swarm optimization-based logistic
regression model. Chemometrics and Intelligent Lab-
oratory Systems, 182:41–46.
Raheem, M., Ameen, A., Ayinla, F., and Ayeyemi, B.
(2020). Software defect prediction using metaheuris-
tic algorithms and classification techniques. Ilorin
Journal of Computer Science and Information Tech-
nology, 3(1):23–39.
Rokach, L. and Maimon, O. (2005). Decision trees. Data
mining and knowledge discovery handbook, pages
165–192.
Roman, A., Bro
˙
zek, R., and Hryszko, J. (2023). Predic-
tive power of two data flow metrics in software defect
prediction.
Sayyad Shirabad, J. and Menzies, T. (2005). The PROMISE
Repository of Software Engineering Databases.
School of Information Technology and Engineering,
University of Ottawa, Canada.
Talbi, E.-G. (2009). Metaheuristics: from design to imple-
mentation. John Wiley & Sons.
Wahono, R. S., Suryana, N., and Ahmad, S. (2014). Meta-
heuristic optimization based feature selection for soft-
ware defect prediction. J. Softw., 9(5):1324–1333.
Wu, G.-C. and Baleanu, D. (2014). Discrete fractional
logistic map and its chaos. Nonlinear Dynamics,
75(1):283–287.
Wu, G.-C., Baleanu, D., and Zeng, S.-D. (2014). Discrete
chaos in fractional sine and standard maps. Physics
Letters A, 378(5-6):484–487.
Zhu, K., Ying, S., Zhang, N., and Zhu, D. (2021). Soft-
ware defect prediction based on enhanced metaheuris-
tic feature selection optimization and a hybrid deep
neural network. Journal of Systems and Software,
180:111026.
Zivkovic, T., Nikolic, B., Simic, V., Pamucar, D., and Ba-
canin, N. (2023). Software defects prediction by meta-
heuristics tuned extreme gradient boosting and analy-
sis based on shapley additive explanations. Applied
Soft Computing, 146:110659.
ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering
640