REFERENCES
Aichele, C. and Sch
¨
onberger, M. (2014). IT-
Projektmanagement: Effiziente Einf
¨
uhrung in
das Management von Projekten. SpringerLink
B
¨
ucher. Springer Vieweg, Berlin.
Alexander, C. (1979). The timeless way of building. Oxford
Univ. Pr, New York.
Alexander, C., Ishikawa, S., and Silverstein, M. (1977). A
Pattern Language: Towns, Buildings, Construction.
Buschmann, F. (1996). Pattern-oriented Software Architec-
ture: A System of Patterns. Wiley, Chichester.
Cao, L. (2017). Data science: Challenges and directions.
Communications of the ACM, 60(8):59–68.
Cao, L. (2018). Data science: A comprehensive overview.
ACM Computing Surveys, 50(3):1–42.
Cato, P., Golzer, P., and Demmelhuber, W. (2015). An in-
vestigation into the implementation factors affecting
the success of big data systems. In 2015 11th Interna-
tional Conference on Innovations in Information Tech-
nology (IIT), pages 134–139. IEEE.
Chang, W. and Grady, N. (2019). Nist big data interoper-
ability framework: Volume 1, definitions.
Coplien, J. O. (2000). Software Patterns. SIGS Books &
multimedia, New York.
Coplien, J. O. and Harrison, N. B. (2005). Organiza-
tional Patterns of Agile Software Development. Pear-
son Prentice Hall, Upper Saddle River.
Das, M., Cui, R., Campbell, D. R., Agrawal, G., and Ram-
nath, R. (2015). Towards methods for systematic re-
search on big data. 2015 IEEE International Confer-
ence on Big Data, pages 2072–2081.
de Medeiros, M. M., Hoppen, N., and Mac¸ada, A. C. G.
(2020). Data science for business: benefits, challenges
and opportunities. The Bottom Line.
Eisend, M. and Kuß, A. (2023). Grundlagen em-
pirischer Forschung: Zur Methodologie in der Be-
triebswirtschaftslehre. Springer Fachmedien Wies-
baden and Imprint Springer Gabler, Wiesbaden, 3.,
¨
uberarbeitete aufage edition.
Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996).
The kdd process for extracting useful knowledge from
volumes of data. Communications of the ACM,
39(11):27–34.
Fehling, C., Barzen, J., Breitenb
¨
ucher, U., and Leymann, F.
(2014). A process for pattern identification, authoring,
and application. In Eloranta, V.-P. and van Heesch, U.,
editors, Proceedings of the 19th European Conference
on Pattern Languages of Programs, pages 1–9, New
York, NY, USA. ACM.
G
¨
okay, G. T., Nazlıel, K., S¸ener, U., G
¨
okalp, E., G
¨
okalp,
M. O., Genc¸al, N., Da
˘
gdas¸, G., and Eren, P. E.
(2023). What drives success in data science projects:
A taxonomy of antecedents. In Computational Intel-
ligence, Data Analytics and Applications, pages 448–
462, Cham. Springer International Publishing.
G
¨
unther, A. and Knote, R. (2017). How to design patterns in
is research – a state-of-the-art analysis. Proceedings
der 13. Internationalen Tagung Wirtschaftsinformatik
(WI 2017), pages 1393–1404.
Haertel, C., Pohl, M., Nahhas, A., Staegemann, D., and Tur-
owski, K. (2022). Toward a lifecycle for data science:
A literature review of data science process models.
PACIS 2022 Proceedings.
Harrison, N. B. (2003). Advanced pattern writing: Patterns
for experienced pattern authors. EuroPLoP, pages
809–828.
Heinrich, L. J. (1997). Management von Informatik-
Projekten. R. Oldenbourg Verlag M
¨
unchen Wien.
Hevner, A. R., March, S. T., and Park, J. (2004). Design
science in information systems research. MIS Quar-
terly.
Iba, T. and Isaku, T. (2012). Holistic pattern-mining pat-
terns: A pattern language for pattern mining on a
holistic approach. 19th Pattern Languages of Pro-
grams conference.
Jeble, S., Kumari, S., and Patil, Y. (2018). Role of big data
in decision making. Operations and Supply Chain
Management, Vol. 11(No. 1):36–44.
Manns, M. L. and Rising, L. (2012). Fearless Change: Pat-
terns for Introducing New Ideas. Addison-Wesley.
Martinez, I., Viles, E., and Olaizola, I. G. (2021a). Data
science methodologies: Current challenges and future
approaches. Big Data Research 24.
Martinez, I., Viles, E., and Olaizola, I. G. (2021b). A survey
study of success factors in data science projects. In
2021 IEEE International Conference on Big Data (Big
Data), pages 2313–2318.
Meszaros, G. and Doble, J. (1997). A pattern language for
pattern writing. Pattern languages of program design,
pages 529–574.
Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chat-
terjee, S. (2007). A design science research method-
ology for information systems research. Journal of
Management Information Systems, 24(3):45–77.
PMI (2017). A guide to the project management body of
knowledge (PMBOK guide). Sixth edition edition.
Saltz, J. (2022). Nine questions to evaluate a data science
team’s process: Exploring a big data science team
process evaluation framework via a delphi study. In
2022 IEEE International Conference on Big Data (Big
Data), pages 2667–2672. IEEE.
Saltz, J., Hotz, N., Wild, D., and Stirling, K. (2018). Explor-
ing project management methodologies used within
data science teams. AMCIS 2018.
Saltz, J. S. (2015). The need for new processes, method-
ologies and tools to support big data teams and im-
prove big data project effectiveness. IEEE Interna-
tional Conference on Big Data 2015.
Saltz, J. S. and Hotz, N. (2020). Identifying the most com-
mon frameworks data science teams use to structure
and coordinate their projects. In 2020 IEEE Inter-
national Conference on Big Data (Big Data), pages
2038–2042. IEEE.
Saltz, J. S. and Krasteva, I. (2022). Current approaches for
executing big data science projects - a systematic lit-
erature review. PeerJ Computer Science, 8(e862).
Saltz, J. S. and Shamshurin, I. (2016). Big data team pro-
cess methodologies: A literature review and the iden-
tification of key factors for a project’s success. In
ICEIS 2024 - 26th International Conference on Enterprise Information Systems
364