Conflict of Interest: Authors Miquel Alfaras and
Zouhair Haddi are employed by NVISION, an R&D
company developing IoT and Digital Health services.
REFERENCES
Abedi, H., Boger, J., Morita, P. P., Wong, A., & Shaker, G.
(2022). Hallway Gait Monitoring Using Novel Radar
Signal Processing and Unsupervised Learning. In IEEE
Sensors Journal (Vol. 22, Issue 15, pp. 15133–15145).
Institute of Electrical and Electronics Engineers
(IEEE). https://doi.org/10.1109/jsen.2022.3184188
Adib, F., Mao, H., Kabelac, Z., Katabi, D., & Miller, R. C.
(2015). Smart Homes that Monitor Breathing and Heart
Rate. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems.
CHI ’15: CHI Conference on Human Factors in
Computing Systems. ACM. https://doi.org/10.1145/27
02123.2702200
Alberdi Aramendi, A., Weakley, A., Aztiria Goenaga, A.,
Schmitter-Edgecombe, M., & Cook, D. J. (2018).
Automatic assessment of functional health decline in
older adults based on smart home data. In Journal of
Biomedical Informatics (Vol. 81, pp. 119–130).
Elsevier BV. https://doi.org/10.1016/j.jbi.2018.03.009
Antolinos, E., García-Rial, F., Hernández, C., Montesano,
D., Godino-Llorente, J. I., & Grajal, J. (2020).
Cardiopulmonary Activity Monitoring Using
Millimeter Wave Radars. In Remote Sensing (Vol. 12,
Issue 14, p. 2265). MDPI AG. https://doi.org/10.33
90/rs12142265
Escalona, S., Alfaras, M., Hernando, R., Lores, L., &
Haddi, Z. (2023). Continuous eHealth monitoring
ecosystem for bronchial asthma and air quality. In
Proceedings of the 16th International Conference on
PErvasive Technologies Related to Assistive
Environments. PETRA ’23: Proceedings of the 16th
International Conference on PErvasive Technologies
Related to Assistive Environments. ACM.
https://doi.org/10.1145/3594806.3596556
Gambi, E., Ciattaglia, G., De Santis, A., & Senigagliesi, L.
(2020). Millimeter wave radar data of people walking.
In Data in Brief (Vol. 31, p. 105996). Elsevier BV.
https://doi.org/10.1016/j.dib.2020.105996
Guimaraes, V., Castro, L., Carneiro, S., Monteiro, M.,
Rocha, T., Barandas, M., Machado, J., Vasconcelos,
M., Gamboa, H., & Elias, D. (2016). A motion tracking
solution for indoor localization using smartphones. In
2016 International Conference on Indoor Positioning
and Indoor Navigation (IPIN). 2016 International
Conference on Indoor Positioning and Indoor
Navigation (IPIN). IEEE. https://doi.org/10.1109/ip
in.2016.7743680
Kabelac, Z., Tarolli, C. G., Snyder, C., Feldman, B.,
Glidden, A., Hsu, C.-Y., Hristov, R., Dorsey, E. R., &
Katabi, D. (2019). Passive Monitoring at Home: A Pilot
Study in Parkinson Disease. In Digital Biomarkers
(Vol. 3, Issue 1, pp. 22–30). S. Karger AG.
https://doi.org/10.1159/000498922
Lázaro, A., Lázaro, M., Villarino, R., & Girbau, D. (2021).
Seat-Occupancy Detection System and Breathing Rate
Monitoring Based on a Low-Cost mm-Wave Radar at
60 GHz. In IEEE Access (Vol. 9, pp. 115403–115414).
Institute of Electrical and Electronics Engineers
(IEEE). https://doi.org/10.1109/access.2021.3105390
Michler, F., Shi, K., Schellenberger, S., Steigleder, T.,
Malessa, A., Hameyer, L., Neumann, N., Lurz, F.,
Ostgathe, C., Weigel, R., & Koelpin, A. (2019). A
Clinically Evaluated Interferometric Continuous-Wave
Radar System for the Contactless Measurement of
Human Vital Parameters. In Sensors (Vol. 19, Issue 11,
p. 2492). MDPI AG. https://doi.org/10.3390/s19112
492
Naziyok, T., Zeleke, A., & Röhrig, R. (2016). Contactless
Patient Monitoring for General Wards: A Systematic
Technology Review. Studies in health technology and
informatics, 228, 707-11.
Pang, W. L., Chung, G. C., Chan, K. Y., Ee, L. I., Roslee,
M., Fitrey, E., Sim, Y. W., & Prasetio, M. D. (2023).
Smart Machine Learning-based IoT Health and Cough
Monitoring System. In International Journal on
Advanced Science, Engineering and Information
Technology (Vol. 13, Issue 5, pp. 1645–1653). Insight
Society. https://doi.org/10.18517/ijaseit.13.5.19024
Paterniani, G., Sgreccia, D., Davoli, A., Guerzoni, G., Di
Viesti, P., Valenti, A. C., Vitolo, M., Vitetta, G. M., &
Boriani, G. (2023). Radar-Based Monitoring of Vital
Signs: A Tutorial Overview. In Proceedings of the
IEEE (Vol. 111, Issue 3, pp. 277–317). Institute of
Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1109/jproc.2023.3244362
Schellenberger, S., Shi, K., Steigleder, T., Malessa, A.,
Michler, F., Hameyer, L., Neumann, N., Lurz, F.,
Weigel, R., Ostgathe, C., & Koelpin, A. (2020). A
dataset of clinically recorded radar vital signs with
synchronised reference sensor signals. In Scientific
Data (Vol. 7, Issue 1). Springer Science and Business
Media LLC. https://doi.org/10.1038/s41597-020-
00629-5
Yen, H. T., Kurosawa, M., Kirimoto, T., Hakozaki, Y.,
Matsui, T., & Sun, G. (2022). A medical radar system
for non-contact vital sign monitoring and clinical
performance evaluation in hospitalized older patients.
In Biomedical Signal Processing and Control (Vol. 75,
p. 103597). Elsevier BV. https://doi.org/10.1016/j.bs
pc.2022.103597
Yoo, S., Ahmed, S., Kang, S., Hwang, D., Lee, J., Son, J.,
& Cho, S. H. (2021). Radar Recorded Child Vital Sign
Public Dataset and Deep Learning-Based Age Group
Classification Framework for Vehicular Application. In
Sensors (Vol. 21, Issue 7, p. 2412). MDPI AG.
https://doi.org/10.3390/s21072412