The adopted approach, which provides promising
results, can be considered as a first step to further
investigate the same satellite data sets over a longer
period, with the final aim of monitoring the
phenological variations. Moreover, the integration
with other satellite data can be experimented in order
to improve the overall accuracy.
ACKNOWLEDGEMENTS
Work supported by the Italian Ministry of Education
and Research (MIUR) in the framework of the Project
“TEBAKA – TErritory Basic Knowledge
Acquisition” - PON “Research and Innovation” 2014-
2020.
Project carried out using ORIGINAL PRISMA
Products - © Italian Space Agency (ASI); the
Products have been delivered under an ASI License
to Use.
Work partially supported by: (i) the University of
Pisa, in the framework of the PRA 2022 101 project
“Decision Support Systems for territorial networks
for managing ecosystem services”; (ii) the European
Commission under the NextGenerationEU program,
Partenariato Esteso PNRR PE1 - "FAIR - Future
Artificial Intelligence Research" - Spoke 1 "Human-
centered AI"; (iii) the Italian Ministry of Education
and Research (MIUR) in the framework of the
FoReLab project (Departments of Excellence).
This research is supported by the Ministry of
University and Research (MUR) as part of the PON
2014-2020 “Research and Innovation” resources –
"Green/Innovation Action – DM MUR 1061/2022".
REFERENCES
Abubakar, M.A., Chanzy, A., Flamain, F., Pouget, G., and
Courault, D. Delineation of Orchard, Vineyard, and
Olive Trees Based on Phenology Metrics Derived from
Time Series of Sentinel-2. Remote Sensing. 2023;
15(9):2420, doi: 10.3390/rs15092420.
Bhosle, K., and Musande, V. (2022). “Evaluation of CNN
model by comparing with convolutional autoencoder
and deep neural network for crop classification on
hyperspectral imagery”. Geocarto International, 37(3),
813-827, doi: 10.1080/10106049.2020.1740950.
Candela, L., Formaro, R., Guarini, R., Loizzo, R., Longo F.,
and Varacalli, G. (2016), "The PRISMA mission", 2016
IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), Beijing, China, 2016, pp. 253-
256, doi: 10.1109/IGARSS.2016.7729057.
Debella-Gilo M., Gjertsen A.K. (2021), “Mapping Seasonal
Agricultural Land Use Types Using Deep Learning on
Sentinel-2 Image Time Series”, Remote Sensing,
13(2):289, doi: 10.3390/rs13020289.
Dosovitskiy, A. et al. (2021). An image is worth 16x16
words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, doi:
10.48550/arXiv.2010.11929.
eoPortal, Satellite Missions catalogue, PRISMA
(Hyperspectral), accessed in March 2024,
https://www.eoportal.org/satellite-missions/prisma-
hyperspectral.
Gallo, I., La Grassa, R., Landro, N., Boschetti, M. (2021).
Sentinel 2 Time Series Analysis with 3D Feature
Pyramid Network and Time Domain Class Activation
Intervals for Crop Mapping. ISPRS International
Journal of Geo-Information, 10(7):483, doi:
10.3390/ijgi10070483.
Herold, M., Latham, J. S., Di Gregorio, A., and Schmullius,
C.C. (2006). Evolving standards in land cover
characterization. Journal of Land Use Science, 1(2-4),
157-168, doi: 10.1080/17474230601079316.
Ji, S., Zhang, C., Xu, A., Shi, Y., and Duan, Y. (2018). 3D
convolutional neural networks for crop classification
with multi-temporal remote sensing images. Remote
Sensing, 10(1):75, doi: 10.3390/rs10010075.
Kussul, N., Lavreniuk, M., Skakun, S., and Shelestov, A.
(2017). "Deep Learning Classification of Land Cover
and Crop Types Using Remote Sensing Data," in IEEE
Geoscience and Remote Sensing Letters, vol. 14, no. 5,
pp. 778-782, doi: 10.1109/LGRS.2017.2681128.
Orlandi, D., Galatolo, F. A., Cimino, M. C., Pagli, C.,
Perilli, N., Pompeu, J. A., & Ruiz, I. (2023). Using deep
learning and radar backscatter for mapping river water
surface. Orbit, 20, 20.
Orlandi, D., Galatolo, F. A., Cimino, M. G., La Rosa, A.,
Pagli, C., & Perilli, N. (2022). Enhancing land
subsidence awareness via InSAR data and Deep
Transformers. In 2022 IEEE Conference on Cognitive
and Computational Aspects of Situation Management
(CogSIMA) (pp. 98-103). IEEE.
Peng, Q., Shen, R., Dong, J., Han, W., Huang, J., Ye, T.,
Zhao, W., and Yuan, W. (2023). A new method for
classifying maize by combining the phenological
information of multiple satellite-based spectral bands.
Frontiers in Environmental Science, 10, 1089007, doi:
10.3389/fenvs.2022.1089007.
Rußwurm, M., and Körner, M. (2020). Self-attention for
raw optical satellite time series classification. ISPRS
journal of photogrammetry and remote sensing, 169,
421-435, doi: 10.1016/j.isprsjprs.2020.06.006.
Sykas, D., Sdraka, M., Zografakis, D., and Papoutsis, I.
(2022). A sentinel-2 multiyear, multicountry
benchmark dataset for crop classification and
segmentation with deep learning. IEEE Journal of
Selected Topics in Applied Earth Observations and
Remote Sensing, 15, 3323-3339, doi:
10.1109/JSTARS.2022.3164771.
Tang, P., Du, P., Xia, J., Zhang, P., and Zhang, W. (2022).
Channel attention-based temporal convolutional
network for satellite image time series classification.