
Table 4: Comparison of the F1-score among other studies. Table is in descending order by F1-score.
Models Overall
No
damage
Minor
damage
Major
damage
Destroyed
BDANet
(Shen et al., 2021)
0.806 0.925 0.616 0.788 0.876
Proposed
model
0.799 0.954 0.601 0.762 0.879
FCN
(Long et al., 2015; Shen et al., 2021)
0.765 0.919 0.532 0.708 0.861
MTF
(Weber and Kan, 2020)
0.741 0.906 0.493 0.722 0.837
WNet
(Hou et al., 2019; Shen et al., 2021)
0.737 0.884 0.518 0.684 0.855
Baseline
model (Gupta et al., 2019)
0.265 0.663 0.143 0.009 0.465
REFERENCES
Alamin, I. M. J., Jeberson, W., and Bajaj, H. (2016). Im-
proved region growing based breast cancer image seg-
mentation. International Journal of Computer Appli-
cations, 975:888.
Banon, G. J. F. and Barrera, J. (1994). Bases da Morfolo-
gia Matem
´
atica para a an
´
alise de imagens bin
´
arias.
UFPE-DI.
Basu, A. (2023). A survey on recent trends in deep learning
for nucleus segmentation from histopathology images.
Evolving Systems, pages 1–46.
Benkhoui, Y., El-Korchi, T., and Reinhold, L. (2021). Ef-
fective pavement crack delineation using a cascaded
dilation module and fully convolutional networks. In
Geometry and Vision: First International Symposium,
ISGV 2021, Auckland, New Zealand, January 28-29,
2021, Revised Selected Papers 1.
Burdescu, D. D., Stanescu, L., Brezovan, M., and Spahiu,
C. S. (2014). Efficient volumetric segmentation
method. In 2014 Federated Conference on Computer
Science and Information Systems, pages 659–668.
Chen, Q., Cheng, Q., Wang, J., Du, M., Zhou, L., and
Liu, Y. (2021). Identification and evaluation of ur-
ban construction waste with vhr remote sensing using
multi-feature analysis and a hierarchical segmentation
method. Remote Sensing, 13(1):158.
Chowdhury, T. and Rahnemoonfar, M. (2021). Self atten-
tion based semantic segmentation on a natural disas-
ter dataset. In 2021 IEEE International Conference on
Image Processing (ICIP), pages 2798–2802.
Da, Y., Ji, Z., and Zhou, Y. (2022). Building damage as-
sessment based on siamese hierarchical transformer
framework. Mathematics, 10(11):1898.
Defense Innovation Unit, DoD (2023). xview2: Assess
building damage. https://xview2.org /dataset.
Acessed: 30/04/2023.
Gaj, S., Yang, M., Nakamura, K., and Li, X. (2019). Au-
tomated cartilage and meniscus segmentation of knee
mri with conditional generative adversarial networks.
Magnetic Resonance in Medicine, 84(1):437–449.
Gupta, R., Goodman, B., Patel, N., Hosfelt, R., Sajeev, S.,
Heim, E., Doshi, J., Lucas, K., Choset, H., and Gas-
ton, M. (2019). Creating xBD: A dataset for assessing
building damage from satellite imagery. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition workshops, pages 10–17.
He, W., Liu, M., Tang, Y., Liu, Q., and Wang, Y.
(2022). Differentiable automatic data augmentation
by proximal update for medical image segmentation.
IEEE/CAA Journal of Automatica Sinica, 9(7):1315–
1318.
Hou, B., Liu, Q., Wang, H., and Wang, Y. (2019). From
W-Net to CDGAN: Bitemporal change detection via
deep learning techniques. IEEE Transactions on Geo-
science and Remote Sensing, 58(3):1790–1802.
Laine, R. F., Arganda-Carreras, I., Henriques, R., and
Jacquemet, G. (2021). Avoiding a replication cri-
sis in deep-learning-based bioimage analysis. Nature
Chemical Biology, 18(10):1136–1144.
Li, K. (2023). Upernet optimisation and application to
mousehole segmentation. In International Conference
on Artificial Intelligence, Virtual Reality, and Visual-
ization (AIVRV 2022), volume 12588, pages 157–163.
Li, T.-T., Jiang, C., Bian, Z., Wang, M., and Niu, X. (2020).
Semantic segmentation of urban street scene based
on convolutional neural network. Journal of Physics
Conference Series, 1682(1):012077.
Li, W., Jafari, O., and Rother, C. (2019). Deep object co-
segmentation. In Computer Vision–ACCV 2018: 14th
Asian Conference on Computer Vision, Perth, Aus-
tralia, December 2–6, 2018, Revised Selected Papers,
Part III 14, pages 638–653.
Long, J., Shelhamer, E., and Darrell, T. (2015). Fully con-
volutional networks for semantic segmentation. In
Building Damage Segmentation After Natural Disasters in Satellite Imagery with Mathematical Morphology and Convolutional Neural
Networks
835