models in their predictions. Incorporating uncertainty
evaluation allows for the identification of areas where
DL. models are less reliable, guiding efforts to im-
prove data, models, and training processes. Focus-
ing on uncertainty can enhance model interpretability
and trustworthiness, making it particularly valuable in
scenarios where making the correct decision is criti-
cal.
REFERENCES
Abrecht, S., Hirsch, A., Raafatnia, S., and Woehrle, M.
(2023). Deep learning safety concerns in automated
driving perception. arXiv preprint arXiv:2309.03774.
Ai, X., He, Q., and Zhang, P. (2023). Analysis of deep
learning object detection methods. In Shuhong Ba
and Fan Zhou, editors, Third International Confer-
ence on Machine Learning and Computer Application
(ICMLCA 2022), volume 12636, page 1263613. SPIE.
Arzhanov, A. (2019). 3d object detection from point cloud.
Bai, Z., Wu, G., Barth, M. J., Liu, Y., Sisbot, E. A., and
Oguchi, K. (2022). Pillargrid: Deep learning-based
cooperative perception for 3d object detection from
onboard-roadside lidar. pages 1743–1749.
CARLA Documentation: ScenarioRunner (12.09.2023).
Carla scenario runner.
CARLA Documentation: WeatherParameters Class
(17.01.2024). Carla weather parameters.
Dong, J., Cong, Y., Sun, G., Wang, L., Lyu, L., Li, J.,
and Konukoglu, E. (2023). Inor-net: Incremental 3-d
object recognition network for point cloud represen-
tation. IEEE Transactions on Neural Networks and
Learning Systems, 34(10):6955–6967.
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and
Koltun, V. (2017). Carla: An open urban driving sim-
ulator. In Conference on robot learning, pages 1–16.
Dworak, D., Ciepiela, F., Derbisz, J., Izzat, I., Ko-
morkiewicz, M., and Wójcik, M. (2019). Perfor-
mance of lidar object detection deep learning architec-
tures based on artificially generated point cloud data
from carla simulator. In 2019 24th International Con-
ference on Methods and Models in Automation and
Robotics (MMAR), pages 600–605.
Elharrouss, O., Hassine, K., Zayyan, A., Chatri, Z., Al-
Maadeed, S., Abualsaud, K., et al. (2023). 3d objects
and scenes classification, recognition, segmentation,
and reconstruction using 3d point cloud data: A re-
view. arXiv preprint arXiv:2306.05978.
Fernandes, D., Silva, A., Névoa, R., Simões, C., Gonzalez,
D., Guevara, M., Novais, P., Monteiro, J., and Melo-
Pinto, P. (2021). Point-cloud based 3d object detec-
tion and classification methods for self-driving appli-
cations: A survey and taxonomy. Information Fusion,
68:161–191.
Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready
for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE Conference on Computer Vision
and Pattern Recognition, pages 3354–3361.
Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., and Ben-
namoun, M. (2021). Deep learning for 3d point
clouds: A survey. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 43(12):4338–4364.
Huang, Z., Zheng, Z., Zhao, J., Hu, H., Wang, Z., and Chen,
D. (2023). Psa-det3d: Pillar set abstraction for 3d ob-
ject detection. Pattern Recognition Letters, 168:138–
145.
Lang, A. H., Vora, S., Caesar, H., Zhou, L., Yang, J.,
and Beijbom, O. (2019). Pointpillars: Fast encoders
for object detection from point clouds. In 2019
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 12689–12697.
Li, C., Ren, Y., and Liu, B. (2023). Pcgen: Point cloud
generator for lidar simulation. In 2023 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 11676–11682.
Lin, J., Yin, H., Yan, J., Ge, W., Zhang, H., and Rigoll, G.
(2022). Improved 3d object detector under snowfall
weather condition based on lidar point cloud. IEEE
Sensors Journal, 22(16):16276–16292.
Mehta, T., Riddhi, L., and Mohana (2023). Simulation and
performance analysis of 3d object detection algorithm
using deep learning for computer vision applications.
In 2023 2nd International Conference on Applied Ar-
tificial Intelligence and Computing (ICAAIC), pages
535–541.
MMDetection3D Team (2020). Mmdetection3d: Openmm-
lab: next-generation platform for general 3d object de-
tection.
OpenPCDet Development Team (2020). Openpcdet: An
open-source toolbox for 3d object detection from
point clouds.
Padilla, R., Netto, S. L., and Da Silva, E. A. B. (2020).
A survey on performance metrics for object-detection
algorithms. In 2020 International Conference on Sys-
tems, Signals and Image Processing (IWSSIP), pages
237–242.
Peng, L., Li, J., Shao, W., and Wang, H. (2023). Peso-
tif: a challenging visual dataset for perception sotif
problems in long-tail traffic scenarios. In 2023 IEEE
Intelligent Vehicles Symposium (IV), pages 1–8.
Qi, C. R., Liu, W., Wu, C., Su, H., and Guibas, L. J. (2018).
Frustum pointnets for 3d object detection from rgb-
d data. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 918–927.
Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). Point-
net: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 652–660.
R, S., Durbha, S. S., and Singh, G. (2023). 3d object detec-
tion in lidar point clouds using graph neural networks.
arXiv preprint arXiv:2301.12519.
Ruan, H., Xu, B., Gao, J., Liu, L., Lv, J., Sheng, Y., and
Zeng, Z. (2023). Gnet: 3d object detection from point
cloud with geometry-aware network. In 2022 IEEE
International Conference on Cyborg and Bionic Sys-
tems (CBS), pages 190–195.
Simulation-Based Performance Evaluation of 3D Object Detection Methods with Deep Learning for a LiDAR Point Cloud Dataset in a
SOTIF-related Use Case
425