
REFERENCES
(2023a). Debian – The Universal Operating System.
(2023b). GitHub: Let’s build from here.
Alon, U., Zilberstein, M., Levy, O., and Yahav, E. (2019).
code2vec:learning distributed representations of code.
Proc. ACM Program. Lang., 3(POPL):40:1–40:29.
Bamler, R. and Mandt, S. (2017). Dynamic word embed-
dings. In ICML, pages 380–389. PMLR.
Bendersky, E. (2019). Github–eliben/pycparser: Complete
c99 parser in pure python.
Bilgin, Z., Ersoy, M. A., Soykan, E. U., Tomur, E., C¸ omak,
P., and Karac¸ay, L. (2020). Vulnerability prediction
from source code using machine learning. IEEE Ac-
cess, 8:150672–150684.
Black, P. E. and Black, P. E. (2018). Juliet 1.3 test suite:
Changes from 1.2. US Department of Commerce, Na-
tional Institute of Standards and Technology.
Chen, L., Ye, W., and Zhang, S. (2019). Capturing source
code semantics via tree-based convolution over api-
enhanced ast. In Proceedings of the 16th ACM Inter-
national Conference on Computing Frontiers, pages
174–182.
Duan, X., Wu, J., Ji, S., Rui, Z., Luo, T., Yang, M., and Wu,
Y. (2019). Vulsniper: Focus your attention to shoot
fine-grained vulnerabilities. In IJCAI, pages 4665–
4671.
Fang, Y., Liu, Y., Huang, C., and Liu, L. (2020). Fastembed:
Predicting vulnerability exploitation possibility based
on ensemble machine learning algorithm. Plos one,
15(2):e0228439.
Feutrill, A., Ranathunga, D., Yarom, Y., and Roughan, M.
(2018). The effect of common vulnerability scoring
system metrics on vulnerability exploit delay. In CAN-
DAR, pages 1–10. IEEE.
Halepmollası, R., Hanifi, K., Fouladi, R. F., and Tosun,
A. (2023). A comparison of source code represen-
tation methods to predict vulnerability inducing code
changes.
Hanifi, K., Fouladi, R. F., Unsalver, B. G., and Karadag, G.
(2023). Software vulnerability prediction knowledge
transferring between programming languages. arXiv
preprint arXiv:2303.06177.
Harer, J. A., Kim, L. Y., Russell, R. L., Ozdemir, O., Kosta,
L. R., Rangamani, A., Hamilton, L. H., Centeno, G. I.,
Key, J. R., Ellingwood, P. M., McConley, M. W., Op-
per, J. M., Chin, P., and Lazovich, T. (2018). Auto-
mated software vulnerability detection with machine
learning. CoRR, abs/1803.04497.
Henkel, J., Lahiri, S. K., Liblit, B., and Reps, T. W. (2018).
Code vectors: understanding programs through em-
bedded abstracted symbolic traces. In ACM Joint
Meeting on, ESEC/SIGSOFT FSE, pages 163–174.
Kanade, A., Maniatis, P., Balakrishnan, G., and Shi, K.
(2020). Learning and evaluating contextual embed-
ding of source code. In ICML, pages 5110–5121.
PMLR.
Lin, G., Wen, S., Han, Q.-L., Zhang, J., and Xiang, Y.
(2020). Software vulnerability detection using deep
neural networks: a survey. Proceedings of the IEEE,
108(10):1825–1848.
Lozoya, R. C., Baumann, A., Sabetta, A., and Bezzi, M.
(2021). Commit2vec: Learning distributed represen-
tations of code changes. SN Comput. Sci., 2(3):150.
Palit, T., Moon, J. F., Monrose, F., and Polychronakis, M.
(2021). Dynpta: Combining static and dynamic anal-
ysis for practical selective data protection. In 2021
IEEE Symposium on Security and Privacy (SP), pages
1919–1937. IEEE.
Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer,
J., Ozdemir, O., Ellingwood, P., and McConley, M.
(2018). Automated vulnerability detection in source
code using deep representation learning. In 2018 17th
IEEE international conference on machine learning
and applications (ICMLA), pages 757–762. IEEE.
S¸ ahin, S. E.,
¨
Ozyedierler, E. M., and Tosun, A. (2022). Pre-
dicting vulnerability inducing function versions using
node embeddings and graph neural networks. Infor-
mation and Software Technology, page 106822.
Sane, P. (2020). Is the owasp top 10 list comprehensive
enough for writing secure code? In Proceedings of the
2020 International Conference on Big Data in Man-
agement, pages 58–61.
Schiewe, M., Curtis, J., Bushong, V., and Cerny, T.
(2022). Advancing static code analysis with language-
agnostic component identification. IEEE Access,
10:30743–30761.
Telang, R. and Wattal, S. (2007). An empirical analysis of
the impact of software vulnerability announcements
on firm stock price. IEEE Transactions on Software
engineering, 33(8):544–557.
Zhou, Y., Liu, S., Siow, J., Du, X., and Liu, Y. (2019). De-
vign: Effective vulnerability identification by learn-
ing comprehensive program semantics via graph neu-
ral networks. Advances in neural information process-
ing systems, 32.
CodeGrapher: An Image Representation Method to Enhance Software Vulnerability Prediction
673