Gottesman, D. and Lo, H.-K. (2001). Proof of security of
quantum key distribution with two-way classical com-
munications. IEEE Trans. Inf. Theory, 49:457–475.
Grover, L. K. (1996). A fast quantum mechanical algorithm
for database search. In Proceedings of the twenty-
eighth annual ACM symposium on Theory of comput-
ing, pages 212–219.
Hong, K., Foong, O.-M., and Low, T. (2016). Challenges in
quantum key distribution: A review. In ICINS ’16:
Proceedings of the 4th International Conference on
Information and Network Security, pages 29–33.
Huang, A., Sun, S.-H., Liu, Z., and Makarov, V. (2018).
Quantum key distribution with distinguishable decoy
states. Phys. Rev. A, 98:012330.
ISO/IEC (2023). ISO/IEC 23837-1:2023 - Information se-
curity — Security requirements, test and evaluation
methods for quantum key distribution — Part 1: Re-
quirements.
ITU (2020). ITU-T Recommendations/ ITU-T Y.3803
(12/2020). Last Accessed 25.1.2024.
ITU (2023). ITU-T Recommendations/ ITU-T Y.3815
(09/2023). Last Accessed 25.1.2024.
Jain, N., Anisimova, E., Khan, I., Makarov, V., Marquardt,
C., and Leuchs, G. (2014). Trojan-horse attacks
threaten the security of practical quantum cryptogra-
phy. New Journal of Physics, 16(12):123030.
Li, H.-W., Wang, S., Huang, J.-Z., Chen, W., Yin, Z.-
Q., Li, F.-Y., Zhou, Z., Liu, D., Zhang, Y., Guo,
G.-C., Bao, W.-S., and Han, Z.-F. (2011). Attack-
ing a practical quantum-key-distribution system with
wavelength-dependent beam-splitter and multiwave-
length sources. Phys. Rev. A, 84:062308.
Li, K., Yao, Y., and Hayashi, M. (2023). Tight exponential
analysis for smoothing the max-relative entropy and
for quantum privacy amplification. IEEE Transactions
on Information Theory, 69(3):1680–1694.
Lizama-Perez, L. (2023). Reverse reconciliation for optimal
error correction in quantum key distribution. Symme-
try, 15(3).
Lu, Z., Shi, J.-H., and Li, F.-G. (2017). Error rate estima-
tion in quantum key distribution with finite resources.
Communications in Theoretical Physics, 67(4):360.
Martinez-Mateo, J., Pacher, C., Peev, M., Ciurana, A., and
Martin, V. (2015). Demystifying the information rec-
onciliation protocol cascade. Quantum Info. Comput.,
15:453–477.
Mehic, M., Niemiec, M., Siljak, H., and Voznak, M. (2020).
Error reconciliation in quantum key distribution pro-
tocols. In Ulidowski, I., Lanese, I., Schultz, U. P.,
and Ferreira, C., editors, Reversible Computation:
Extending Horizons of Computing: Selected Results
of the COST Action IC1405, pages 222–236, Cham.
Springer International Publishing.
Mi, S., Dong, S., Hou, Q., Wang, J., Yu, Y., Wei, Z., and
Zhang, Z. (2022). Joint photon-number splitting at-
tack on semi-quantum key distribution. Frontiers in
Physics, 10.
Moriarty, K., Kaliski, B., Jonsson, J., and Rusch, A. (2016).
PKCS #1: RSA Cryptography Specifications Version
2.2. RFC 8017.
Nir, Y., Josefsson, S., and P
´
egouri
´
e-Gonnard, M. (2018).
Elliptic Curve Cryptography (ECC) Cipher Suites for
Transport Layer Security (TLS) Versions 1.2 and Ear-
lier. RFC 8422.
NIST (2008). The Keyed-Hash Message Authentication
code (HMAC). Federal Information Processing Stan-
dards Publication 198-1.
NIST (2017a). Post-quantum cryptography: Call for
proposals. https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/
call-for-proposals-final-dec-2016.pdf. Last accessed
14.2.2024.
NIST (2017b). Post-quantum cryptography:
Workshops and timeline. https://csrc.nist.
gov/Projects/post-quantum-cryptography/
workshops-and-timeline. Last accessed 14.2.2024.
Python Software Foundation (2023). os, Miscellaneous op-
erating system interfaces. https://docs.python.org/3/
library/os.html. Last accessed 14.2.2024.
Reutov, A., Tayduganov, A., Mayboroda, V., and Fat’yanov,
O. (2023). Security of the decoy-state BB84 pro-
tocol with imperfect state preparation. Entropy,
25(11):1556.
Rijsman Revision, B. (2020). The Cascade informa-
tion reconciliation protocol. https://cascade-python.
readthedocs.io/en/latest/protocol.html. Last accessed
14.2.2024.
Shen, Y.-C., Gao, L., and Cheng, H.-C. (2023). Privacy am-
plification against quantum side information via reg-
ular random binning. In 2023 59th Annual Allerton
Conference on Communication, Control, and Com-
puting (Allerton), pages 1–8.
Shor, P. W. (1994). Algorithms for quantum computation:
discrete logarithms and factoring. In Proceedings 35th
annual symposium on foundations of computer sci-
ence, pages 124–134.
Stebila, D. and Mosca, M. (2016). Post-quantum key ex-
change for the internet and the open quantum safe
project. In International Conference on Selected Ar-
eas in Cryptography, pages 14–37. Springer. https:
//openquantumsafe.org/.
Sun, S. and Huang, A. (2022). A review of security eval-
uation of practical quantum key distribution system.
Entropy, 24(2).
Sun, S.-H., Xu, F., Jiang, M.-S., Ma, X.-C., Lo, H.-K., and
Liang, L.-M. (2015). Effect of source tampering in
the security of quantum cryptography. Phys. Rev. A,
92:022304.
Weier, H., Krauss, H., Rau, M., F
¨
urst, M., Nauerth, S., and
Weinfurter, H. (2011). Quantum eavesdropping with-
out interception: an attack exploiting the dead time
of single-photon detectors. New Journal of Physics,
13(7):073024.
Wolf, R. (2021). Quantum Key Distribution - An Introduc-
tion with Exercises, volume 988 of Lecture Notes in
Physics. Springer.
Yoshino, K.-i., Fujiwara, M., Nakata, K., Sumiya, T.,
Sasaki, T., Takeoka, M., Sasaki, M., Tajima, A.,
Koashi, M., and Tomita, A. (2018). Quantum key
distribution with an efficient countermeasure against
correlated intensity fluctuations in optical pulses. npj
Quantum Information, 4(1).
Security Analysis for BB84 Key Distillation
415