5 CONCLUSIONS AND FUTURE
WORK
In this paper, we have provided our methodology for
applying the state-of-the-art ClustCube framework to
the real-life problem of supporting Multidimensional
Machine Learning over Cloud-enabled big data
infrastructures, and we have shown its proof-of-
concept in the tourism sector. This model can be
further extended, for instance via supporting the
discovery of new communities among tourists (e.g.,
(Wu, et al., 2013; Chen, et al., 2021)).
Future work is mainly oriented to engraft into our
framework innovative aspects of big data processing
(e.g., (Cuzzocrea & Mansmann, 2009; Islam, et al.,
2017; Langone, et al., 2020; Barkwell, et al., 2018;
Bobek, et al., 2022; Hiremath, et al., 2023)).
ACKNOWLEDGEMENTS
This work was partially funded by the Next
Generation EU - Italian NRRP, Mission 4,
Component 2, Investment 1.5 (Directorial Decree n.
2021/3277) - project Tech4You n. ECS0000009.
REFERENCES
Babanezhad, M., Marjani, A., & Shirazian, S. (2020).
Multidimensional Machine Learning Algorithms to
Learn Liquid Velocity Inside a Cylindrical Bubble
Column Reactor. Scientific Reports 10(1), art. 21502.
Barkwell, K.E., Cuzzocrea, A., Leung, C.K., Ocran, A.A.,
Sanderson, J.M., Stewart, J.A., & Wodi, B.H. (2018).
Big Data Visualisation and Visual Analytics for Music
Data Mining. In: IV’18, 22nd International Conference
Information Visualisation, pp. 235-240.
Bobek, S., Kuk, M., Szelazek, M., & Nalepa, G.J. (2022).
Enhancing Cluster Analysis with Explainable AI and
Multidimensional Cluster Prototypes. IEEE Access 10,
pp. 101556-101574.
Chen, Y., Chen, R., Hou, J., Hou, M., & Xie, X. (2021).
Research on Users' Participation Mechanisms in Virtual
Tourism Communities by Bayesian Network.
Knowledge Based Systems 226, art. 107161.
Cruz Lopes, C., Cesário Times, V., Matwin, S., Rodrigues
Ciferri, R., & Dutra de Aguiar Ciferri, C. (2014).
Processing OLAP Queries over an Encrypted Data
Warehouse Stored in the Cloud. In: DaWaK’14,
International Conference on Big Data Analytics and
Knowledge Discovery, pp. 195-207.
Cuzzocrea A., & Mansmann S. (2009). OLAP
Visualization: Models, Issues, and Techniques.
Encyclopedia of Data Warehousing and Mining, pp.
1439-1446.
Cuzzocrea, A. (2015) Computing and Mining ClustCube
Cubes Efficiently. In: PAKDD’15, 19th Pacific-Asia
Conference on Advances in Knowledge Discovery and
Data Mining, pp. 146-161.
Cuzzocrea, A. (2020). OLAPing Big Social Data:
Multidimensional Big Data Analytics over Big Social
Data Repositories. In: ICCBDC’20, 4th International
Conference on Cloud and Big Data Computing, pp. 15-
19.
Cuzzocrea, A. (2021). Innovative Paradigms for Supporting
Privacy-Preserving Multidimensional Big Healthcare
Data Management and Analytics: The Case of the EU
H2020 QUALITOP Research Project. In:
SWH@ISWC’21, 4th International Workshop on
Semantic Web Meets Health Data Management, pp. 1-
7.
Cuzzocrea, A. (2022). Multidimensional Big Data
Analytics over Big Web Knowledge Bases: Models,
Issues, Research Trends, and a Reference Architecture.
In: BigMM’22, 8th IEEE International Conference on
Multimedia Big Data, pp. 1-6.
Dehne, F.K.H.A., Kong, Q., Rau-Chaplin, A., Zaboli. H., &
Zhou, R. (2015). Scalable real-time OLAP on cloud
architectures. Journal of Parallel and Distributed
Computing 79-80, pp. 31-41.
Dkaich, R., El Azami, I., & Mouloudi, A. (2017). XML
OLAP Cube in the Cloud towards the DWaaS.
International Journal of Cloud Computing 7(1), pp. 47-
56.
Gray, J., Chaudhuri, S., Bosworth, A., Layman, A.,
Reichart, D., Venkatrao, M., & Pirahesh, H. (1997).
Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Totals.
Data Mining and Knowledge Discovery 1(1), pp. 29-53.
Hiremath, S., Shetty, E., Prakash, A.J., Sahoo, S.P., Patro,
K.K., Rajesh, K.N., & Pławiak, P. (2023). A New
Approach to Data Analysis Using Machine Learning
for Cybersecurity. Big Data and Cognitive Computing,
7(4), art. 176.
Iglesias, F., Zseby, T., Ferreira, D., & Zimek, A. (2019).
MDCGen: Multidimensional Dataset Generator for
Clustering.
Journal of Classification 36, pp. 599-618.
Islam, O., Alfakeeh, A., & Nadeem, F. (2017). A
Framework for Effective Big Data Analytics for
Decision Support Systems. International Journal of
Computer Networks and Applications 4(5), pp. 129-
137.
Khrouf, O., Khrouf, K., & Feki, J. (2018). CobWeb
Multidimensional Model and Tag-Cloud Operators for
OLAP of Documents. International Journal of Green
Computing 9(2), pp. 46-48.
Kuschewski, M., & Leis, V. (2021). White-Box OLAP
Performance Modelling for the Cloud. In: CIDR’21,
Conference on Innovative Data Systems Research.
Langone, R., Cuzzocrea, A., & Skantzos, N. (2020).
Interpretable Anomaly Prediction: Predicting
Anomalous Behavior in Industry 4.0 Settings via