
cal mode decomposition. Advances in Adaptive Data
Analysis, 2(01):1–24.
Barbosh, M., Singh, P., and Sadhu, A. (2020). Empirical
mode decomposition and its variants: a review with
applications in structural health monitoring. Smart
Materials and Structures, 29(9):093001.
Brunton, B. W., Brunton, S. L., Proctor, J. L., and Kutz,
J. N. (2013). Optimal sensor placement and en-
hanced sparsity for classification. arXiv preprint
arXiv:1310.4217.
Chen, Z. and Liu, B. (2016). Lifelong machine learning.
Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning, 10(3):1–145.
Clark, E., Askham, T., Brunton, S. L., and Kutz, J. N.
(2018). Greedy sensor placement with cost con-
straints. IEEE Sensors Journal, 19(7):2642–2656.
de Silva, B. M., Manohar, K., Clark, E., Brunton, B. W.,
Brunton, S. L., and Kutz, J. N. (2021). Pysensors: A
python package for sparse sensor placement. arXiv
preprint arXiv:2102.13476.
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
A fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE transactions on evolutionary compu-
tation, 6(2):182–197.
Emmanuel, C., Romberg, J., and Tao, T. (2005). Stable
signal recovery from incomplete and inaccurate mea-
surements.
Fontugne, R., Ortiz, J., Culler, D., and Esaki, H.
(2012). Empirical mode decomposition for intrinsic-
relationship extraction in large sensor deployments.
In Workshop on Internet of Things Applications, IoT-
App, volume 12.
Garg, V. and Bansal, N. K. (2000). Smart occupancy sen-
sors to reduce energy consumption. Energy and Build-
ings, 32(1):81–87.
Gong, Z., Cui, Q., Chaccour, C., Zhou, B., Chen, M., and
Saad, W. (2021). Lifelong learning for minimizing
age of information in internet of things networks. In
ICC 2021-IEEE International Conference on Commu-
nications, pages 1–6. IEEE.
Hojjati, S. N. and Khodakarami, M. (2016). Evaluation of
factors affecting the adoption of smart buildings us-
ing the technology acceptance model. International
Journal of Advanced Networking and Applications,
7(6):2936.
Hong, D., Ortiz, J., Whitehouse, K., and Culler, D. (2013).
Towards automatic spatial verification of sensor place-
ment in buildings. In Proceedings of the 5th ACM
Workshop on Embedded Systems For Energy-Efficient
Buildings, pages 1–8.
Jia, M., Komeily, A., Wang, Y., and Srinivasan, R. S.
(2019). Adopting internet of things for the develop-
ment of smart buildings: A review of enabling tech-
nologies and applications. Automation in Construc-
tion, 101:111–126.
Ko, C.-W., Lee, J., and Queyranne, M. (1995). An exact al-
gorithm for maximum entropy sampling. Operations
Research, 43(4):684–691.
Ma, Z., Badi, A., and Jorgensen, B. N. (2016). Mar-
ket opportunities and barriers for smart buildings. In
2016 IEEE Green Energy and Systems Conference
(IGSEC), pages 1–6. IEEE.
Ma, Z., Billanes, J. D., and Jørgensen, B. N. (2017).
A business ecosystem driven market analysis: The
bright green building market potential. In 2017 IEEE
Technology & Engineering Management Conference
(TEMSCON), pages 79–85. IEEE.
Manohar, K., Hogan, T., Buttrick, J., Banerjee, A. G., Kutz,
J. N., and Brunton, S. L. (2018). Predicting shim gaps
in aircraft assembly with machine learning and sparse
sensing. Journal of manufacturing systems, 48:87–95.
Medeiros, D. R. d. S. and Fernandes, M. A. (2020).
Distributed genetic algorithms for low-power, low-
cost and small-sized memory devices. Electronics,
9(11):1891.
Mitra, A., Ngoko, Y., and Trystram, D. (2021). Impact of
federated learning on smart buildings. In 2021 In-
ternational Conference on Artificial Intelligence and
Smart Systems (ICAIS), pages 93–99. IEEE.
Mitra, A., Thang, N. K., Nguyen, T.-A., Trystram, D.,
and Youssef, P. (2022). Online decentralized frank-
wolfe: From theoretical bound to applications in
smart-building. arXiv preprint arXiv:2208.00522.
Nirjon, S. (2018). Lifelong learning on harvested energy. In
Proceedings of the 16th Annual International Confer-
ence on Mobile Systems, Applications, and Services,
pages 500–501.
Pipattanasomporn, M., Chitalia, G., Songsiri, J., Aswakul,
C., Pora, W., Suwankawin, S., Audomvongseree, K.,
and Hoonchareon, N. (2020). Cu-bems, smart build-
ing electricity consumption and indoor environmental
sensor datasets. Scientific Data, 7(1):1–14.
Thrun, S. (1995). Lifelong learning: A case study. Techni-
cal report, Carnegie-Mellon Univ Pittsburgh pa Dept
of Computer Science.
Umbarkar, A. J. and Sheth, P. D. (2015). Crossover opera-
tors in genetic algorithms: a review. ICTACT journal
on soft computing, 6(1).
Wong, J. K., Li, H., and Wang, S. (2005). Intelligent build-
ing research: a review. Automation in construction,
14(1):143–159.
Xu, Y., Ahokangas, P., Turunen, M., M
¨
antym
¨
aki, M., and
Heikkil
¨
a, J. (2019). Platform-based business models:
Insights from an emerging ai-enabled smart building
ecosystem. Electronics, 8(10):1150.
Yoganathan, D., Kondepudi, S., Kalluri, B., and Mantha-
puri, S. (2018). Optimal sensor placement strategy for
office buildings using clustering algorithms. Energy
and Buildings, 158:1206–1225.
IoTBDS 2024 - 9th International Conference on Internet of Things, Big Data and Security
118