ACKNOWLEDGMENTS
The research reported in this paper has been partly
funded by the European Union’s Horizon 2020
research and innovation program within the
framework of Chips Joint Undertaking (Grant No.
101112268). This work has been supported by Silicon
Austria Labs (SAL), owned by the Republic of
Austria, the Styrian Business Promotion Agency
(SFG), the federal state of Carinthia, the Upper
Austrian Research (UAR), and the Austrian
Association for the Electric and Electronics Industry
(FEEI).
REFERENCES
Abreha, H. G., Hayajneh, M., & Serhani, M. A. (2022).
Federated Learning in Edge Computing: A Systematic
Survey. In Sensors (Vol. 22, Issue 2).
Ahn, J. H., Simeone, O., & Kang, J. (2019). Wireless
Federated Distillation for Distributed Edge Learning
with Heterogeneous Data. IEEE International
Symposium on Personal, Indoor and Mobile Radio
Communications, PIMRC, 2019-September.
Belov, D. I., & Armstrong, R. D. (2011). Distributions of
the Kullback–Leibler divergence with applications.
British Journal of Mathematical and Statistical
Psychology, 64(2), 291–309.
Boyd, S. (2010). Distributed Optimization and Statistical
Learning via the Alternating Direction Method of
Multipliers (Vol. 3).
Claici, S., Yurochkin, M., Ghosh, S., & Solomon, J. (2020).
Model fusion with kullback-leibler divergence. 37th
International Conference on Machine Learning, ICML
2020, PartF168147-3.
Elgabli, A., Park, J., Bedi, A. S., Bennis, M., & Aggarwal,
V. (2020). GADMM: Fast and Communication
Efficient Framework for Distributed Machine
Learning. Journal of Machine Learning Research, 21.
Jospin, L. V., Laga, H., Boussaid, F., Buntine, W., &
Bennamoun, M. (2022). Hands-On Bayesian Neural
Networks—A Tutorial for Deep Learning Users. IEEE
Computational Intelligence Magazine, 17(2), 29–48.
Kalervo, A., Ylioinas, J., Häikiö, M., Karhu, A., & Kannala,
J. (2019). CubiCasa5K: A Dataset and an Improved
Multi-task Model for Floorplan Image Analysis.
Lecture Notes in Computer Science (Including
Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 11482 LNCS, 28–40.
Koda, Y., Park, J., Bennis, M., Yamamoto, K., Nishio, T.,
Morikura, M., & Nakashima, K. (2020).
Communication-efficient multimodal split learning for
mmWave received power prediction. IEEE
Communications Letters, 24(6).
Kullback, S., & Leibler, R. A. (1951). On Information and
Sufficiency. The Annals of Mathematical Statistics,
22(1), 79–86.
Liang, Q., Hanafy, W. A., Ali-Eldin, A., & Shenoy, P.
(2023). Model-driven Cluster Resource Management
for AI Workloads in Edge Clouds. ACM Transactions
on Autonomous and Adaptive Systems, 18(1), 1–26.
Lim, W. Y. B., Luong, N. C., Hoang, D. T., Jiao, Y., Liang,
Y.-C., Yang, Q., Niyato, D., & Miao, C. (2020).
Federated Learning in Mobile Edge Networks: A
Comprehensive Survey. IEEE Communications
Surveys & Tutorials, 22(3), 2031–2063.
Nguyen, V. D., Chatzinotas, S., Ottersten, B., & Duong, T.
Q. (2022). FedFog: Network-Aware Optimization of
Federated Learning Over Wireless Fog-Cloud Systems.
IEEE Transactions on Wireless Communications,
21(10).
Park, J., Samarakoon, S., Elgabli, A., Kim, J., Bennis, M.,
Kim, S.-L., & Debbah, M. (2021). Communication-
Efficient and Distributed Learning Over Wireless
Networks: Principles and Applications. Proceedings of
the IEEE, 109(5), 796–819.
Parmar, V., Sarwar, S. S., Li, Z., Lee, H.-H. S., Salvo, B.
De, & Suri, M. (2023). Exploring Memory-Oriented
Design Optimization of Edge AI Hardware for
Extended Reality Applications. IEEE Micro, 43(6), 40–
49.
Samie, F., Tsoutsouras, V., Bauer, L., Xydis, S., Soudris,
D., & Henkel, J. (2016). Computation offloading and
resource allocation for low-power IoT edge devices.
2016 IEEE 3rd World Forum on Internet of Things
(WF-IoT), 7–12.
Wang, B., Dong, K., Zakaria, N. A. B., Upadhyay, M.,
Wong, W.-F., & Peh, L.-S. (2022). Network-on-Chip-
Centric Accelerator Architectures for Edge AI
Computing. 2022 19th International SoC Design
Conference (ISOCC), 243–244.
Yu, J., Vincent, J. A., & Schwager, M. (2022). DiNNO:
Distributed Neural Network Optimization for Multi-
Robot Collaborative Learning. IEEE Robotics and
Automation Letters, 7(2), 1896–1903.