want to test the effect of different interpolation func-
tions (such as the B
´
ezier curve). We believe that this
study shows the high potential of adaptive track seg-
mentation.
ACKNOWLEDGEMENTS
This work was supported by the Grant Agency of
the Czech Technical University in Prague, grant No.
SGS22/167/OHK3/3T/13 and co-funded by the Euro-
pean Union under the project ROBOPROX (reg. no.
CZ.02.01.01/00/22 008/0004590).
REFERENCES
Agnihotri, A., O’Kelly, M., Mangharam, R., and Abbas,
H. (2020). Teaching Autonomous Systems at 1/10th-
scale: Design of the F1/10 Racecar, Simulators and
Curriculum. In Proceedings of the 51st ACM Tech-
nical Symposium on Computer Science Education,
SIGCSE ’20, pages 657–663, New York, NY, USA.
Association for Computing Machinery.
Botta, M., Gautieri, V., Loiacono, D., and Lanzi, P. L.
(2012). Evolving the optimal racing line in a high-end
racing game. In 2012 IEEE Conference on Computa-
tional Intelligence and Games (CIG), pages 108–115.
ISSN: 2325-4289.
Braghin, F., Cheli, F., Melzi, S., and Sabbioni, E.
(2008). Race driver model. Computers & Structures,
86(13):1503–1516.
Caleffi, F., Rodrigues, L. d. S., Stamboroski, J. d. S., Rorig,
B. V., Santos, M. M. C. d., Zuchetto, V., and Raguz-
zoni,
´
I. B. (2023). A systematic review of hardware
technologies for small-scale self-driving cars. Ci
ˆ
encia
e Natura, 45(esp. 1):84071.
Cataffo, V., Silano, G., Iannelli, L., Puig, V., and Glielmo,
L. (2022). A Nonlinear Model Predictive Control
Strategy for Autonomous Racing of Scale Vehicles.
In 2022 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pages 100–105.
Evans, B. D., Trumpp, R., Caccamo, M., Jordaan, H. W.,
and Engelbrecht, H. A. (2024). Unifying f1tenth au-
tonomous racing: Survey, methods and benchmarks.
arXiv:2402.18558.
Garlick, S. and Bradley, A. (2022). Real-time optimal tra-
jectory planning for autonomous vehicles and lap time
simulation using machine learning. Vehicle System
Dynamics, 60(12):4269–4289.
Heilmeier, A., Wischnewski, A., Hermansdorfer, L., Betz,
J., Lienkamp, M., and Lohmann, B. (2020). Min-
imum curvature trajectory planning and control for
an autonomous race car. Vehicle System Dynamics,
58(10):1497–1527.
Kapania, N. R., Subosits, J., and Christian Gerdes, J.
(2016). A Sequential Two-Step Algorithm for Fast
Generation of Vehicle Racing Trajectories. Jour-
nal of Dynamic Systems, Measurement, and Control,
138(9):091005.
Klap
´
alek, J., Nov
´
ak, A., Sojka, M., and Hanz
´
alek, Z.
(2021). Car racing line optimization with genetic
algorithm using approximate homeomorphism. In
2021 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 601–607.
O’Kelly, M., Zheng, H., Jain, A., Auckley, J., Luong, K.,
and Mangharam, R. (2020). Tunercar: A superopti-
mization toolchain for autonomous racing. In 2020
IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 5356–5362.
Rapin, J. and Teytaud, O. (2018). Nevergrad
- A gradient-free optimization platform.
https://GitHub.com/FacebookResearch/Nevergrad.
Wymann, B., Espi
´
e, E., Guionneau, C., Dimitrakakis, C.,
Coulom, R., and Sumner, A. (2014). TORCS, The
Open Racing Car Simulator. http://www.torcs.org.
Study of Track Segmentation for Lap Time Optimization
455