
and applicability of the proposed solutions in real-
world operational scenarios.
ACKNOWLEDGEMENTS
The authors would like to thank FAPEMIG, CAPES,
CNPq, Instituto Tecnol
´
ogico Vale, and the Federal
University of Ouro Preto for supporting this work.
This study was partially funded by the Coordenac¸
˜
ao
de Aperfeic¸oamento de Pessoal de N
´
ıvel Superior
- Brasil (CAPES) - Finance Code 001, the Con-
selho Nacional de Desenvolvimento Cient
´
ıfico e Tec-
nol
´
ogico (CNPq) finance code 308219/2020-1.
REFERENCES
An, K. and Zhang, Y. (2022). Lpvit: A transformer based
model for pcb image classification and defect detec-
tion. IEEE Access, 10:42542–42553.
Chen, J., Luo, T., Wu, J., Wang, Z., and Zhang, H. (2022).
A vision transformer network seedvit for classification
of maize seeds. Journal of Food Process Engineering,
45(5):e13998.
Concha, F., Barrientos, A., Montero, J., and Sampaio, R.
(1996). Air core and roping in hydrocyclones. Inter-
national Journal of Mineral Processing, 44-45:743–
749. Comminution.
Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S., and
Zomaya, A. Y. (2020). Edge intelligence: The con-
fluence of edge computing and artificial intelligence.
IEEE Internet of Things Journal, 7(8):7457–7469.
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. (2021). An image is worth 16x16 words: Trans-
formers for image recognition at scale.
Giglia, K. and Aldrich, C. (2020). Operational state detec-
tion in hydrocyclones with convolutional neural net-
works and transfer learning. Minerals Engineering,
149:106211.
Goodfellow, I. J., Bengio, Y., and Courville, A. (2016).
Deep Learning. MIT Press, Cambridge, MA, USA.
http://www.deeplearningbook.org.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep resid-
ual learning for image recognition.
H
¨
utten, N., Meyes, R., and Meisen, T. (2022). Vision trans-
former in industrial visual inspection. Applied Sci-
ences, 12(23).
Hua, H., Li, Y., Wang, T., Dong, N., Li, W., and Cao, J.
(2023). Edge computing with artificial intelligence:
A machine learning perspective. ACM Comput. Surv.,
55(9).
Janse van Vuuren, M., Aldrich, C., and Auret, L. (2011).
Detecting changes in the operational states of hydro-
cyclones. Minerals Engineering, 24(14):1532–1544.
Klippel, E., Oliveira, R. A. R., Maslov, D., Bianchi, A.
G. C., Delabrida, S. E., and Garrocho, C. T. B. (2022).
Embedded edge artificial intelligence for longitudinal
rip detection in conveyor belt applied at the industrial
mining environment. SN Computer Science, 3(4):280.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in neural information process-
ing systems, pages 1097–1105.
Li, G., Wang, Y., Zhao, Q., Yuan, P., and Chang, B. (2023).
Pmvt: a lightweight vision transformer for plant dis-
ease identification on mobile devices. Frontiers in
Plant Science, 14:1256773.
Li, S., Wu, C., and Xiong, N. (2022). Hybrid architecture
based on cnn and transformer for strip steel surface
defect classification. Electronics, 11(8):1200.
Liu, X. and Aldrich, C. (2023). Flotation froth image recog-
nition using vision transformers. IFAC-PapersOnLine,
56(2):2329–2334. 22nd IFAC World Congress.
Luz, A. B. d., Sampaio, J. A., and Franc¸a, S. C. A. (2010).
Tratamento de min
´
erios.
Mehta, S. and Rastegari, M. (2022). Separable self-
attention for mobile vision transformers.
Moutik, O., Sekkat, H., Tigani, S., Chehri, A., Saadane, R.,
Tchakoucht, T. A., and Paul, A. (2023). Convolutional
neural networks or vision transformers: Who will win
the race for action recognitions in visual data? Sen-
sors, 23(2).
Napier-Munn, T. and Centre, J. K. M. R. (1996). Mineral
Comminution Circuits: Their Operation and Optimi-
sation. JKMRC monograph series in mining and min-
eral processing. Julius Kruttschnitt Mineral Research
Centre.
Olson, T. and Waterman, R. (2005). Hydrocyclone rop-
ing detector and method. United States Patent
US6983850B2.
S. Mishra, M. H. T. and Majumder, A. K. (2022). De-
velopment of a vibration sensor-based tool for on-
line detection of roping in small-diameter hydrocy-
clones. Mineral Processing and Extractive Metallurgy
Review, 0(0):1–20.
Singh, A., Saini, K., Nagar, V., Aseri, V., Sankhla, M. S.,
Pandit, P. P., and Chopade, R. L. (2022). Chapter six-
teen - artificial intelligence in edge devices. In Raj, P.,
Saini, K., and Surianarayanan, C., editors, Edge/Fog
Computing Paradigm: The Concept Platforms and
Applications, volume 127 of Advances in Computers,
pages 437–484. Elsevier.
Singh, R. and Gill, S. S. (2023). Edge ai: A survey. Internet
of Things and Cyber-Physical Systems, 3:71–92.
Song, H., Wang, Y., Wang, M., and Wang, Z. (2022).
Ucvit: Hardware-friendly vision transformer via uni-
fied compression. In 2022 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pages 2022–
2026.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin,
I. (2017). Attention is all you need. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fer-
gus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.
Zhang, M., Shi, H., Zhang, Y., Yu, Y., and Zhou, M. (2021).
Deep learning-based damage detection of mining con-
veyor belt. Measurement, 175:109130.
ICEIS 2024 - 26th International Conference on Enterprise Information Systems
872