Engineering in Society, 37–46. https://doi.org/10.11
45/3183428.3183434
Cernau, L. D., Dioşan, L. S., & Șerban, C. (2022). A
pedagogical approach in interleaving software quality
concerns at an artificial intelligence course.
Proceedings of the 4th International Workshop on
Education through Advanced Software Engineering
and Artificial Intelligence, 18–24. https://doi.org/10.11
45/3548660.3561332
Chiu, T. K. F., Moorhouse, B. L., Chai, C. S., & Ismailov,
M. (2023). Teacher support and student motivation to
learn with Artificial Intelligence (AI) based chatbot.
Interactive Learning Environments, 1–17.
https://doi.org/10.1080/10494820.2023.2172044
Dalpiaz, F., & Niu, N. (2020). Requirements Engineering
in the Days of Artificial Intelligence. IEEE Software,
37(4), 7–10. https://doi.org/10.1109/MS.2020.2986047
Daun, M., & Brings, J. (2023). How ChatGPT Will Change
Software Engineering Education. Proceedings of the
2023 Conference on Innovation and Technology in
Computer Science Education V. 1, 110–116.
https://doi.org/10.1145/3587102.3588815
Dirin, A., & Laine, T. H. (2018). Towards an Adaptive
Study Management Platform: Freedom Through
Personalization: Proceedings of the 10th International
Conference on Computer Supported Education, 432–
439. https://doi.org/10.5220/0006788104a0439
Dirin, A., Oliver, I., & Laine, T. H. (2023). A Security
Framework for Increasing Data and Device Integrity in
Internet of Things Systems. Sensors, 23(17), 7532.
https://doi.org/10.3390/s23177532
Dixon-Román, E., Nichols, T. P., & Nyame-Mensah, A.
(2020). The racializing forces of/in AI educational
technologies. Learning, Media and Technology, 45(3),
236–250.
https://doi.org/10.1080/17439884.2020.1667825
Du, H., Li, Z., Niyato, D., Kang, J., Xiong, Z., Xuemin,
Shen, & Kim, D. I. (2023). Enabling AI-Generated
Content (AIGC) Services in Wireless Edge Networks.
https://doi.org/10.48550/ARXIV.2301.03220
Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A.,
Mottaghi, A., Liu, Y., Topol, E., Dean, J., & Socher, R.
(2021). Deep learning-enabled medical computer
vision. Npj Digital Medicine, 4(1), 5.
https://doi.org/10.1038/s41746-020-00376-2
Georgievski, I. (2023). Conceptualising Software
Development Lifecycle for Engineering AI Planning
Systems. 2023 IEEE/ACM 2nd International
Conference on AI Engineering – Software Engineering
for AI (CAIN), 88–89. https://doi.org/10.1109/
CAIN58948.2023.00019
Gilson, A., Safranek, C. W., Huang, T., Socrates, V., Chi,
L., Taylor, R. A., & Chartash, D. (2023). How Does
ChatGPT Perform on the United States Medical
Licensing Examination? The Implications of Large
Language Models for Medical Education and
Knowledge Assessment. JMIR Medical Education, 9,
e45312. https://doi.org/10.2196/45312
Goldberg, A. T. (1986). Knowledge-based programming: A
survey of program design and construction techniques.
IEEE Transactions on Software Engineering, SE-12(7),
752–768. https://doi.org/10.1109/TSE.1986.6312977
Guerrero, L. E., Castillo, L. F., Arango-López, J., &
Moreira, F. (2023). A systematic review of integrated
information theory: A perspective from artificial
intelligence and the cognitive sciences. Neural
Computing and Applications. https://doi.org/10.1007/
s00521-023-08328-z
How, M.-L., & Hung, W. L. D. (2019). Educational
Stakeholders’ Independent Evaluation of an Artificial
Intelligence-Enabled Adaptive Learning System Using
Bayesian Network Predictive Simulations. Education
Sciences, 9(2), 110. https://doi.org/10.3390/educsci902
0110
Imai, S. (2022). Is GitHub copilot a substitute for human
pair-programming?: An empirical study. Proceedings
of the ACM/IEEE 44th International Conference on
Software Engineering: Companion Proceedings, 319–
321. https://doi.org/10.1145/3510454.3522684
Jung, Y. H., Hong, S. K., Wang, H. S., Han, J. H., Pham, T.
X., Park, H., Kim, J., Kang, S., Yoo, C. D., & Lee, K.
J. (2020). Flexible Piezoelectric Acoustic Sensors and
Machine Learning for Speech Processing. Advanced
Materials, 32(35), 1904020. https://doi.org/10.1002/
adma.201904020
Kaplan, A. D., Kessler, T. T., Brill, J. C., & Hancock, P. A.
(2023). Trust in Artificial Intelligence: Meta-Analytic
Findings. Human Factors: The Journal of the Human
Factors and Ergonomics Society, 65(2), 337–359.
https://doi.org/10.1177/00187208211013988
Khan, A. A., Laghari, A. A., Li, P., Dootio, M. A., & Karim,
S. (2023). The collaborative role of blockchain,
artificial intelligence, and industrial internet of things in
digitalization of small and medium-size enterprises.
Scientific Reports, 13(1), 1656. https://doi.org/10.10
38/s41598-023-28707-9
Kim, T., & Song, H. (2023). Communicating the
Limitations of AI: The Effect of Message Framing and
Ownership on Trust in Artificial Intelligence.
International Journal of Human–Computer Interaction,
39(4), 790–800. https://doi.org/10.1080/10447318.20
22.2049134
Leyer, M., & Schneider, S. (2021). Decision augmentation
and automation with artificial intelligence: Threat or
opportunity for managers? Business Horizons, 64(5),
711–724. https://doi.org/10.1016/j.bushor.2021.02.026
Maciel, L. (2023). Editorial: ChatGPT and the ethical
aspects of artificial intelligence. Revista de Gestão,
30(2), 110–112. https://doi.org/10.1108/REGE-04-
2023-207
Mieczkowski, H., Hancock, J. T., Naaman, M., Jung, M., &
Hohenstein, J. (2021). AI-Mediated Communication:
Language Use and Interpersonal Effects in a Referential
Communication Task. Proceedings of the ACM on
Human-Computer Interaction, 5(CSCW1), 1–14.
https://doi.org/10.1145/3449091
Neumann, M., Rauschenberger, M., & Schön, E.-M.
(2023). “We Need To Talk About ChatGPT”: The
Future of AI and Higher Education [Application/pdf].
163 KB. https://doi.org/10.25968/OPUS-2467