
and detection: A comprehensive study. IEEE Access,
7:167172–167186.
Kashevnik, A., Ali, A., Lashkov, I., and Zubok, D. (2021a).
Human head angle detection based on image analy-
sis. In Arai, K., Kapoor, S., and Bhatia, R., edi-
tors, Proceedings of the Future Technologies Confer-
ence (FTC) 2020, Volume 1, pages 233–242, Cham.
Springer International Publishing.
Kashevnik, A., Shchedrin, R., Kaiser, C., and Stocker, A.
(2021b). Driver distraction detection methods: A lit-
erature review and framework. IEEE Access, PP:1–1.
Kazemi, V. and Sullivan, J. (2014). One millisecond face
alignment with an ensemble of regression trees. In
CVPR 2014, pages 1867–1874. IEEE.
Kovalenko, S., Mamonov, A., Kuznetsov, V., Bulygin, A.,
Shoshina, I., Brak, I., and Kashevnik, A. (2023). Op-
eratoreyevp: Operator dataset for fatigue detection
based on eye movements, heart rate data, and video
information. Sensors, 23(13).
Landolt, E. (1888). Methode optometrique simple. Bull
Mem Soc Fran Ophtalmol, 6:213–4.
Liu, X., Fang, Z., Liu, X., Zhang, X., Gu, J., and Xu,
Q. (2017). Driver Fatigue Detection Using Multi-
task Cascaded Convolutional Networks. In Shi, Z.,
Goertzel, B., and Feng, J., editors, 2nd International
Conference on Intelligence Science (ICIS), volume
AICT-510 of Intelligence Science I, pages 143–152,
Shanghai, China. Springer International Publishing.
Part 3: Big Data Analysis and Machine Learning.
Louppe, G. (2015). Understanding random forests: From
theory to practice.
Luo, H., Lee, P.-A., Clay, I., Jaggi, M., and De Luca, V.
(2020). Assessment of Fatigue Using Wearable Sen-
sors: A Pilot Study. Digital Biomarkers, 4(Suppl.
1):59–72.
Luo, H., Yang, D., Barszczyk, A., Vempala, N., Wei, J., Wu,
S. J., Zheng, P. P., Fu, G., Lee, K., and Feng, Z.-P.
(2019). Smartphone-based blood pressure measure-
ment using transdermal optical imaging technology.
Circulation. Cardiovascular imaging, 12 8:e008857.
Mathew, J., Tian, X., Wu, M., and Wong, C.-W. (2022).
Remote blood oxygen estimation from videos using
neural networks.
Matuz, A., van der Linden, D., Kisander, Z., Hern
´
adi, I.,
K
´
azm
´
er, K., and Csath
´
o, r. (2021). Enhanced car-
diac vagal tone in mental fatigue: Analysis of heart
rate variability in time-on-task, recovery, and reactiv-
ity. PLOS ONE, 16(3):e0238670.
Meng, J., Zhao, B., Ma, Y., Yiyu, J., and Nie, B. (2014).
Effects of fatigue on the physiological parameters of
labor employees. Natural Hazards, 74.
Mizuno, K., Tanaka, M., Kouzi, Y., Kajimoto, O., Kurat-
sune, H., and Watanabe, Y. (2011). Mental fatigue
caused by prolonged cognitive load associated with
sympathetic hyperactivity. Behavioral and brain func-
tions : BBF, 7:17.
Oiwa, K., Bando, S., and Nozawa, A. (2018). Contactless
blood pressure sensing using facial visible and thermal
images. Artificial Life and Robotics, 23.
Othman, W. and Kashevnik, A. (2022). Video-based real-
time heart rate detection for drivers inside the cabin
using a smartphone. In 2022 IEEE International Con-
ference on Internet of Things and Intelligence Systems
(IoTaIS), pages 142–146.
Othman, W., Kashevnik, A., Ali, A., Shilov, N., and Ryu-
min, D. (2024). Remote heart rate estimation based
on transformer with multi-skip connection decoder:
Method and evaluation in the wild. Sensors, 24(3).
Othman, W., Kashevnik, A., Ryabchikov, I., and Shilov, N.
(2022). Contactless camera-based approach for driver
respiratory rate estimation in vehicle cabin. Lecture
Notes in Networks and Systems, 5431:429–442.
Qin, H., Zhou, X., Ou, X., Liu, Y., and Xue, C. (2021). De-
tection of mental fatigue state using heart rate variabil-
ity and eye metrics during simulated flight. Human
Factors and Ergonomics in Manufacturing & Service
Industries.
Ranjan, R., Sankaranarayanan, S., Castillo, C. D., and Chel-
lappa, R. (2017). An all-in-one convolutional neural
network for face analysis. In IEEE FG 2017, pages
17–24. IEEE.
Ravindran, K., Subha, P., Rajkumar, S., and Muthuvelu, K.
(2022). Implementing opencv and dlib open-source
library for detection of driver’s fatigue. In Innovative
Data Communication Technologies and Application,
pages 353–367. Springer.
Revanur, A., Dasari, A., Tucker, C. S., and Jeni, L. A.
(2022). Instantaneous physiological estimation using
video transformers.
Rogers, W. P., Marques, J., Talebi, E., and Drews, F. A.
(2023). Iot-enabled wearable fatigue-tracking system
for mine operators. Minerals, 13(2).
Rudari, L., Johnson, M. E., Geske, R. C., and Sperlak, L. A.
(2016). Pilot perceptions on impact of crew rest regu-
lations on safety and fatigue. International Journal of
Aviation, Aeronautics, and Aerospace, 3:4.
Ruiz, N., Chong, E., and Rehg, J. M. (2018). Fine-grained
head pose estimation without keypoints. In CVPR
2018, pages 2187–2196. IEEE.
Sampei, K., Ogawa, M., Torres, C. C. C., Sato, M., and
Miki, N. (2016). Mental fatigue monitoring using a
wearable transparent eye detection system. Microma-
chines, 7(2).
Sarada Devi, M. and Bajaj, P. (2008). Driver fatigue detec-
tion using mouth and yawning analysis. 8.
Saurav, S., Mathur, S., Sang, I., Prasad, S. S., and Singh, S.
(2019). Yawn detection for driver’s drowsiness pre-
diction using bi-directional lstm with cnn features. In
IHCI 2019: Intelligent Human Computer Interaction,
pages 189–200. Springer.
Savas¸, B. K. and Becerikli, Y. (2020). Real time driver
fatigue detection system based on multi-task connn.
IEEE Access, 8:12491–12498.
Scebba, G., Da Poian, G., and W., K. (2021). Multispectral
video fusion for noncontact monitoring of respiratory
rate and apnea. IEEE Transactions on Biomedical En-
gineering, 68(1):350–359.
Slapni
ˇ
car, G., Mlakar, N., and Lu
ˇ
strek, M. (2019). Blood
pressure estimation from photoplethysmogram using
Operator Fatigue Detection via Analysis of Physiological Indicators Estimated Using Computer Vision
431