
ACKNOWLEDGEMENTS
This work has been partially supported by EU DUCA,
EU CyberSecPro, SYNAPSE, PTR 22-24 P2.01 (Cy-
bersecurity), and SERICS (PE00000014) under the
MUR National Recovery and Resilience Plan funded
by the EU - NextGenerationEU projects.
REFERENCES
Abdel-Basset, M., Hawash, H., Sallam, K. M., Elgendi, I.,
Munasinghe, K., and Jamalipour, A. (2022). Efficient
and lightweight convolutional networks for iot mal-
ware detection: A federated learning approach. IEEE
Internet of Things Journal, 10(8):7164–7173.
Chaudhuri, A., Nandi, A., and Pradhan, B. (2023). A Dy-
namic Weighted Federated Learning for Android Mal-
ware Classification, page 147–159. Springer Nature
Singapore.
Fang, W., He, J., Li, W., Lan, X., Chen, Y., Li, T., Huang, J.,
and Zhang, L. (2023). Comprehensive android mal-
ware detection based on federated learning architec-
ture. IEEE Transactions on Information Forensics and
Security.
G
´
alvez, R., Moonsamy, V., and Diaz, C. (2020). Less
is more: A privacy-respecting android malware
classifier using federated learning. arXiv preprint
arXiv:2007.08319.
Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,
Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V.,
Le, Q. V., and Adam, H. (2019). Searching for mo-
bilenetv3.
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., and Adam,
H. (2017). Mobilenets: Efficient convolutional neu-
ral networks for mobile vision applications. arXiv
preprint arXiv:1704.04861.
Huang, P., Li, C., He, P., Xiao, H., Ping, Y., Feng, P., Tian,
S., Chen, H., Mercaldo, F., Santone, A., et al. (2024).
Mamlformer: Priori-experience guiding transformer
network via manifold adversarial multi-modal learn-
ing for laryngeal histopathological grading. Informa-
tion Fusion, page 102333.
Iadarola, G., Casolare, R., Martinelli, F., Mercaldo, F.,
Peluso, C., and Santone, A. (2021a). A semi-
automated explainability-driven approach for mal-
ware analysis through deep learning. In 2021 Interna-
tional Joint Conference on Neural Networks (IJCNN),
pages 1–8.
Iadarola, G., Martinelli, F., Mercaldo, F., and Santone,
A. (2021b). Towards an interpretable deep learning
model for mobile malware detection and family iden-
tification. Computers & Security, 105:102198.
Jiang, C., Yin, K., Xia, C., and Huang, W. (2022). Fedhgc-
droid: An adaptive multi-dimensional federated learn-
ing for privacy-preserving android malware classifica-
tion. Entropy, 24.
Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Ben-
nis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z.,
Cormode, G., Cummings, R., D’Oliveira, R. G. L.,
Eichner, H., Rouayheb, S. E., Evans, D., Gardner, J.,
Garrett, Z., Gasc
´
on, A., Ghazi, B., Gibbons, P. B.,
Gruteser, M., Harchaoui, Z., He, C., He, L., Huo, Z.,
Hutchinson, B., Hsu, J., Jaggi, M., Javidi, T., Joshi,
G., Khodak, M., Kone
ˇ
cn
´
y, J., Korolova, A., Koushan-
far, F., Koyejo, S., Lepoint, T., Liu, Y., Mittal, P.,
Mohri, M., Nock, R.,
¨
Ozg
¨
ur, A., Pagh, R., Raykova,
M., Qi, H., Ramage, D., Raskar, R., Song, D., Song,
W., Stich, S. U., Sun, Z., Suresh, A. T., Tram
`
er, F.,
Vepakomma, P., Wang, J., Xiong, L., Xu, Z., Yang,
Q., Yu, F. X., Yu, H., and Zhao, S. (2021). Advances
and open problems in federated learning.
Khramtsova, E., Hammerschmidt, C., Lagraa, S., and State,
R. (2020). Federated learning for cyber security:
Soc collaboration for malicious url detection. In
2020 IEEE 40th International Conference on Dis-
tributed Computing Systems (ICDCS), pages 1316–
1321. IEEE.
Kim, T., Kang, B., Rho, M., Sezer, S., and Im, E. G.
(2018). A multimodal deep learning method for an-
droid malware detection using various features. IEEE
Transactions on Information Forensics and Security,
14(3):773–788.
Li, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W., and
Ye, H. (2018). Significant permission identification
for machine-learning-based android malware detec-
tion. IEEE Transactions on Industrial Informatics,
14(7):3216–3225.
Lin, K.-Y. and Huang, W.-R. (2020). Using federated learn-
ing on malware classification. In 2020 22nd interna-
tional conference on advanced communication tech-
nology (ICACT), pages 585–589. IEEE.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Doll
´
ar, P.
(2018). Focal loss for dense object detection.
Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D., and Liu, H.
(2020). A review of android malware detection ap-
proaches based on machine learning. IEEE Access,
8:124579–124607.
Mercaldo, F., Ciaramella, G., Iadarola, G., Storto, M., Mar-
tinelli, F., and Santone, A. (2022a). Towards ex-
plainable quantum machine learning for mobile mal-
ware detection and classification. Applied Sciences,
12(23):12025.
Mercaldo, F., Zhou, X., Huang, P., Martinelli, F., and San-
tone, A. (2022b). Machine learning for uterine cervix
screening. In 2022 IEEE 22nd International Confer-
ence on Bioinformatics and Bioengineering (BIBE),
pages 71–74. IEEE.
Rathore, H., Agarwal, S., Sahay, S. K., and Sewak, M.
(2018). Malware detection using machine learning
and deep learning. In Big Data Analytics: 6th Interna-
tional Conference, BDA 2018, Warangal, India, De-
cember 18–21, 2018, Proceedings 6, pages 402–411.
Springer.
Rey, V., S
´
anchez, P. M. S., Celdr
´
an, A. H., and Bovet, G.
(2022). Federated learning for malware detection in
iot devices. Computer Networks, 204:108693.
ICEIS 2024 - 26th International Conference on Enterprise Information Systems
562