Arabshahi, F., Singh, S., & Anandkumar, A. (2018).
Combining Symbolic Expressions and Black-box
Function Evaluations in Neural Programs.
Confalonieri, R., Prado, F. M. del, Agramunt, S.,
Malagarriga, D., Faggion, D., Weyde, T., & Besold, T.
R. (2019). An Ontology-based Approach to Explaining
Artificial Neural Networks. ArXiv, 1906.08362(January).
http://arxiv.org/abs/1906.08362
Confalonieri, R., Weyde, T., Besold, T. R., & Moscoso del
Prado Martín, F. (2021). Using ontologies to enhance
human understandability of global post-hoc explanations
of black-box models. Artificial Intelligence, 296.
https://doi.org/10.1016/j.artint.2021.103471
Confalonieri, R., Weyde, T., Besold, T. R., & Moscoso Del
Prado Martín, F. (2020). Trepan reloaded: A knowledge-
driven approach to explaining black-box models.
Frontiers in Artificial Intelligence and Applications, 325,
2457–2464. https://doi.org/10.3233/FAIA200378
Dash, T., Srinivasan, A., & Vig, L. (2021). Incorporating
symbolic domain knowledge into graph neural networks.
Machine Learning, 110(7), 1609–1636.
https://doi.org/10.1007/s10994-021-05966-z
de Sousa Ribeiro, M., & Leite, J. (2021). Aligning Artificial
Neural Networks and Ontologies towards Explainable
AI. 35th AAAI Conference on Artificial Intelligence,
AAAI 2021, 6A(6), 4932–4940. https://doi.org/
10.1609/aaai.v35i6.16626
Garcez, A. d’Avila, & Lamb, L. C. (2020). Neurosymbolic
AI: The 3rd Wave.
Guest, O., & Martin, A. E. (2023). On Logical Inference over
Brains, Behaviour, and Artificial Neural Networks.
Computational Brain & Behavior. https://doi.org/10.10
07/s42113-022-00166-x
Hu, Z., Ma, X., Liu, Z., Hovy, E., & Xing, E. (2016).
Harnessing Deep Neural Networks with Logic Rules.
Kingma, D. P., & Ba, J. (2014). Adam: A Method for
Stochastic Optimization.
Lai, P., Phan, N., Hu, H., Badeti, A., Newman, D., & Dou, D.
(2020). Ontology-based Interpretable Machine Learning
for Textual Data. 2020 International Joint Conference on
Neural Networks (IJCNN), 1–10. https://doi.org/10.11
09/IJCNN48605.2020.9206753
Li, Y., Ouyang, S., & Zhang, Y. (2022). Combining deep
learning and ontology reasoning for remote sensing
image semantic segmentation. Knowledge-Based
Systems, 243, 108469. https://doi.org/10.1016/j.knos
ys.2022.108469
Mishra, N., & Samuel, J. M. (2021). Towards Integrating
Data Mining With Knowledge-Based System for
Diagnosis of Human Eye Diseases. In Handbook of
Research on Disease Prediction Through Data Analytics
and Machine Learning (pp. 470–485). IGI Global.
https://doi.org/10.4018/978-1-7998-2742-9.ch024
Nguyen, D. T., Nam, S. H., Batchuluun, G., Owais, M., &
Park, K. R. (2022). An Ensemble Classification Method
for Brain Tumor Images Using Small Training Data.
Mathematics, 10(23), 4566. https://doi.org/10.3390/math
10234566
Panigutti, C., Perotti, A., & Pedreschi, D. (2020). Doctor XAI
An ontology-based approach to black-box sequential
data classification explanations. FAT* 2020 -
Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, 629–639.
https://doi.org/10.1145/3351095.3372855
Picco, G., Lam, H. T., Sbodio, M. L., & Garcia, V. L. (2021).
Neural Unification for Logic Reasoning over Natural
Language.
Pitz, D. W., & Shavlik, J. W. (1995). Dynamically adding
symbolically meaningful nodes to knowledge-based
neural networks. Knowledge-Based Systems, 8(6), 301–
311. https://doi.org/10.1016/0950-7051(96)81915-0
Prabhushankar, M., & AlRegib, G. (2022). Introspective
Learning : A Two-Stage Approach for Inference in
Neural Networks.
Prem, E., Mackinger, M., Dorffner, G., Porenta, G., &
Sochor, H. (n.d.). Concept support as a method for
programming neural networks with symbolic
knowledge. In GWAI-92: Advances in Artificial
Intelligence (pp. 166–175). Springer-Verlag.
https://doi.org/10.1007/BFb0019002
Shavlik, J. W. (1994). Combining symbolic and neural
learning. Machine Learning, 14(3), 321–331.
https://doi.org/10.1007/BF00993982
Shilov, N., Othman, W., Fellmann, M., & Sandkuhl, K.
(2021). Machine Learning-Based Enterprise Modeling
Assistance: Approach and Potentials. Lecture Notes in
Business Information Processing, 432, 19–33.
https://doi.org/10.1007/978-3-030-91279-6_2
Shilov, N., Othman, W., Fellmann, M., & Sandkuhl, K.
(2023). Machine learning for enterprise modeling
assistance: an investigation of the potential and proof of
concept. Software and Systems Modeling.
https://doi.org/10.1007/s10270-022-01077-y
Smirnov, A., Shilov, N., & Ponomarev, A. (2023).
Facilitating Enterprise Model Classification via
Embedding Symbolic Knowledge into Neural Network
Models. Communications in Computer and Information
Science, 1875, 269–279. https://doi.org/10.1007/978-3-
031-39059-3_18
Ultsch, A. (1994). The Integration of Neural Networks with
Symbolic Knowledge Processing. In New Approaches in
Classification and Data Analysis (pp. 445–454).
https://doi.org/10.1007/978-3-642-51175-2_51
Wermter, S., & Sun, R. (2000). An Overview of Hybrid
Neural Systems. Lecture Notes in Artificial Intelligence
(Subseries of Lecture Notes in Computer Science), 1778,
1–13. https://doi.org/10.1007/10719871_1
Xie, Y., Xu, Z., Kankanhalli, M. S., Meel, K. S., & Soh, H.
(2019). Embedding Symbolic Knowledge into Deep
Networks. Advances in Neural Information Processing
Systems, 32.
Xu, J., Zhang, Z., Friedman, T., Liang, Y., & Broeck, G.
(2018). A Semantic Loss Function for Deep Learning
with Symbolic Knowledge. Proceedings of Machine
Learning Research, 80, 5502–5511.
Yang, Z., Ishay, A., & Lee, J. (2020). NeurASP: Embracing
Neural Networks into Answer Set Programming.
Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, 1755–1762.
https://doi.org/10.24963/ijcai.2020/243