Arabshahi,  F.,  Singh,  S.,  &  Anandkumar,  A.  (2018). 
Combining Symbolic Expressions and Black-box 
Function Evaluations in Neural Programs. 
Confalonieri,  R.,  Prado,  F.  M.  del,  Agramunt,  S., 
Malagarriga, D., Faggion, D., Weyde, T., & Besold, T. 
R. (2019). An Ontology-based  Approach  to  Explaining 
Artificial Neural Networks. ArXiv, 1906.08362(January). 
http://arxiv.org/abs/1906.08362 
Confalonieri, R., Weyde, T., Besold, T. R., & Moscoso del 
Prado  Martín,  F.  (2021).  Using  ontologies  to  enhance 
human understandability of global post-hoc explanations 
of  black-box  models.  Artificial Intelligence,  296. 
https://doi.org/10.1016/j.artint.2021.103471 
Confalonieri, R., Weyde, T., Besold, T. R., & Moscoso Del 
Prado Martín, F. (2020). Trepan reloaded: A knowledge-
driven  approach  to  explaining  black-box  models. 
Frontiers in Artificial Intelligence and Applications, 325, 
2457–2464. https://doi.org/10.3233/FAIA200378 
Dash,  T.,  Srinivasan,  A.,  &  Vig,  L.  (2021).  Incorporating 
symbolic domain knowledge into graph neural networks. 
Machine Learning,  110(7),  1609–1636. 
https://doi.org/10.1007/s10994-021-05966-z 
de Sousa Ribeiro, M., & Leite, J. (2021). Aligning Artificial 
Neural  Networks  and  Ontologies  towards  Explainable 
AI.  35th AAAI Conference on Artificial Intelligence, 
AAAI 2021,  6A(6),  4932–4940.  https://doi.org/ 
10.1609/aaai.v35i6.16626 
Garcez, A.  d’Avila, & Lamb, L.  C. (2020). Neurosymbolic 
AI: The 3rd Wave. 
Guest, O., & Martin, A. E. (2023). On Logical Inference over 
Brains,  Behaviour,  and  Artificial  Neural  Networks. 
Computational Brain & Behavior.  https://doi.org/10.10 
07/s42113-022-00166-x 
Hu,  Z.,  Ma,  X.,  Liu,  Z.,  Hovy,  E.,  &  Xing,  E.  (2016). 
Harnessing Deep Neural Networks with Logic Rules. 
Kingma,  D.  P.,  &  Ba,  J.  (2014).  Adam: A Method for 
Stochastic Optimization. 
Lai, P., Phan, N., Hu, H., Badeti, A., Newman, D., & Dou, D. 
(2020). Ontology-based Interpretable Machine Learning 
for Textual Data. 2020 International Joint Conference on 
Neural Networks (IJCNN),  1–10.  https://doi.org/10.11 
09/IJCNN48605.2020.9206753 
Li,  Y.,  Ouyang,  S.,  &  Zhang,  Y.  (2022).  Combining  deep 
learning  and  ontology  reasoning  for  remote  sensing 
image  semantic  segmentation.  Knowledge-Based 
Systems,  243,  108469.  https://doi.org/10.1016/j.knos 
ys.2022.108469 
Mishra,  N.,  &  Samuel,  J.  M.  (2021).  Towards  Integrating 
Data  Mining  With  Knowledge-Based  System  for 
Diagnosis  of  Human  Eye  Diseases.  In  Handbook of 
Research on Disease Prediction Through Data Analytics 
and Machine Learning  (pp.  470–485).  IGI  Global. 
https://doi.org/10.4018/978-1-7998-2742-9.ch024 
Nguyen, D. T., Nam, S.  H., Batchuluun, G., Owais, M., & 
Park, K. R. (2022). An Ensemble Classification Method 
for  Brain  Tumor  Images  Using  Small  Training  Data. 
Mathematics, 10(23), 4566. https://doi.org/10.3390/math 
10234566 
Panigutti, C., Perotti, A., & Pedreschi, D. (2020). Doctor XAI 
An  ontology-based  approach  to  black-box  sequential 
data  classification  explanations.  FAT* 2020 - 
Proceedings of the 2020 Conference on Fairness, 
Accountability, and Transparency,  629–639. 
https://doi.org/10.1145/3351095.3372855 
Picco, G., Lam, H. T., Sbodio, M. L., & Garcia, V. L. (2021). 
Neural Unification for Logic Reasoning over Natural 
Language. 
Pitz,  D.  W.,  &  Shavlik,  J.  W.  (1995).  Dynamically  adding 
symbolically  meaningful  nodes  to  knowledge-based 
neural networks. Knowledge-Based Systems, 8(6), 301–
311. https://doi.org/10.1016/0950-7051(96)81915-0 
Prabhushankar,  M.,  &  AlRegib,  G.  (2022).  Introspective 
Learning : A Two-Stage Approach for Inference in 
Neural Networks. 
Prem,  E.,  Mackinger,  M.,  Dorffner,  G.,  Porenta,  G.,  & 
Sochor,  H.  (n.d.).  Concept  support  as  a  method  for 
programming  neural  networks  with  symbolic 
knowledge.  In  GWAI-92: Advances in Artificial 
Intelligence  (pp.  166–175).  Springer-Verlag. 
https://doi.org/10.1007/BFb0019002 
Shavlik,  J.  W.  (1994).  Combining  symbolic  and  neural 
learning.  Machine Learning,  14(3),  321–331. 
https://doi.org/10.1007/BF00993982 
Shilov,  N.,  Othman,  W.,  Fellmann,  M.,  &  Sandkuhl,  K. 
(2021).  Machine  Learning-Based  Enterprise  Modeling 
Assistance:  Approach  and  Potentials.  Lecture Notes in 
Business Information Processing,  432,  19–33. 
https://doi.org/10.1007/978-3-030-91279-6_2 
Shilov,  N.,  Othman,  W.,  Fellmann,  M.,  &  Sandkuhl,  K. 
(2023).  Machine  learning  for  enterprise  modeling 
assistance: an investigation of the potential and proof of 
concept.  Software and Systems Modeling. 
https://doi.org/10.1007/s10270-022-01077-y 
Smirnov,  A.,  Shilov,  N.,  &  Ponomarev,  A.  (2023). 
Facilitating  Enterprise  Model  Classification  via 
Embedding Symbolic  Knowledge into  Neural Network 
Models. Communications in Computer and Information 
Science,  1875,  269–279.  https://doi.org/10.1007/978-3-
031-39059-3_18 
Ultsch, A. (1994). The Integration of Neural Networks with 
Symbolic Knowledge Processing. In New Approaches in 
Classification and Data Analysis  (pp.  445–454). 
https://doi.org/10.1007/978-3-642-51175-2_51 
Wermter,  S.,  &  Sun,  R.  (2000).  An  Overview  of  Hybrid 
Neural Systems. Lecture Notes in Artificial Intelligence 
(Subseries of Lecture Notes in Computer Science), 1778, 
1–13. https://doi.org/10.1007/10719871_1 
Xie, Y., Xu, Z., Kankanhalli, M. S., Meel, K. S., & Soh, H. 
(2019).  Embedding  Symbolic  Knowledge  into  Deep 
Networks.  Advances in Neural Information Processing 
Systems, 32. 
Xu,  J.,  Zhang,  Z.,  Friedman,  T.,  Liang,  Y.,  &  Broeck,  G. 
(2018).  A  Semantic  Loss  Function  for  Deep  Learning 
with  Symbolic  Knowledge.  Proceedings of Machine 
Learning Research, 80, 5502–5511. 
Yang, Z., Ishay, A., & Lee, J. (2020). NeurASP: Embracing 
Neural  Networks  into  Answer  Set  Programming. 
Proceedings of the Twenty-Ninth International Joint 
Conference on Artificial Intelligence,  1755–1762. 
https://doi.org/10.24963/ijcai.2020/243