
imaging data.
REFERENCES
Balakrishnan, H. N., Kathpalia, A., Saha, S., and Nagaraj,
N. (2019). Chaosnet: A chaos based artificial neural
network architecture for classification. Chaos: An In-
terdisciplinary Journal of Nonlinear Science, 29(11).
Bukhari, W. and Hong, S. (2014). Real-time prediction
and gating of respiratory motion using an extended
kalman filter and gaussian process regression. Physics
in Medicine & Biology, 60(1):233.
Ghasemi, Z. and Samadi Miandoab, P. (2022). Feasibility
study of convolutional long short-term memory net-
work for pulmonary movement prediction in ct im-
ages. Journal of Biomedical Physics and Engineering.
Gottwald, G. A. and Melbourne, I. (2004). A new test
for chaos in deterministic systems. Proceedings of
the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences, 460(2042):603–
611.
Harikrishnan, N. B. and Nagaraj, N. (2019). A novel chaos
theory inspired neuronal architecture. In 2019 Global
Conference for Advancement in Technology (GCAT),
pages 1–6. IEEE.
Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017).
Image-to-image translation with conditional adversar-
ial networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
1125–1134.
Kai, J., Fujii, F., and Shiinoki, T. (2018). Prediction of lung
tumor motion based on recurrent neural network. In
2018 IEEE International Conference on Mechatronics
and Automation (ICMA), pages 1093–1099. IEEE.
Lee, S. J., Motai, Y., and Murphy, M. (2011). Respiratory
motion estimation with hybrid implementation of ex-
tended kalman filter. IEEE Transactions on Industrial
Electronics, 59(11):4421–4432.
Lin, H., Shi, C., Wang, B., Chan, M. F., Tang, X., and Ji,
W. (2019). Towards real-time respiratory motion pre-
diction based on long short-term memory neural net-
works. Physics in Medicine & Biology, 64(8):085010.
Lotter, W., Kreiman, G., and Cox, D. (2016). Deep predic-
tive coding networks for video prediction and unsu-
pervised learning. arXiv preprint arXiv:1605.08104.
McCall, K. and Jeraj, R. (2007). Dual-component model of
respiratory motion based on the periodic autoregres-
sive moving average (periodic arma) method. Physics
in Medicine & Biology, 52(12):3455.
Michalski, D., Huq, M., Bednarz, G., Lalonde, R., Yang, Y.,
and Heron, D. (2014). Su-e-j-261: Statistical analysis
and chaotic dynamics of respiratory signal of patients
in bodyfix. Medical Physics, 41(6Part10):218–218.
Nabavi, S., Abdoos, M., Moghaddam, M. E., and Moham-
madi, M. (2020). Respiratory motion prediction using
deep convolutional long short-term memory network.
Journal of Medical Signals & Sensors, 10(2):69–75.
Noel, M. M., Trivedi, A., Dutta, P., et al. (2021). Grow-
ing cosine unit: A novel oscillatory activation func-
tion that can speedup training and reduce parame-
ters in convolutional neural networks. arXiv preprint
arXiv:2108.12943.
Rehailia-Blanchard, A., De Oliveira Duarte, S., Baury, M.,
Auberdiac, P., Diard, A., Brun, C., Talabard, J., Ran-
coule, C., Magn
´
e, N., et al. (2019). Use of 4d-ct: Main
technical aspects and clinical benefits. Cancer Radio-
therapie: Journal de la Societe Francaise de Radio-
therapie Oncologique, 23(4):334–341.
Reid, S. and Ferens, K. (2021). A hybrid chaotic activation
function for artificial neural networks. In Advances in
Artificial Intelligence and Applied Cognitive Comput-
ing: Proceedings from ICAI’20 and ACC’20, pages
1097–1105. Springer.
Rostampour, N., Jabbari, K., Esmaeili, M., Mohammadi,
M., and Nabavi, S. (2018). Markerless respiratory tu-
mor motion prediction using an adaptive neuro-fuzzy
approach. Journal of medical signals and sensors,
8(1):25.
Ruan, D. (2010). Kernel density estimation-based real-time
prediction for respiratory motion. Physics in Medicine
& Biology, 55(5):1311.
Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K.,
and Woo, W.-c. (2015). Convolutional lstm network:
A machine learning approach for precipitation now-
casting. Advances in neural information processing
systems, 28.
Siegel, R. L., Miller, K. D., Fuchs, H. E., and Jemal, A.
(2022). Cancer statistics, 2022. CA: a cancer journal
for clinicians, 72(1):7–33.
Sun, W., Jiang, M., Ren, L., Dang, J., You, T., and Yin, F.
(2017). Respiratory signal prediction based on adap-
tive boosting and multi-layer perceptron neural net-
work. Physics in Medicine & Biology, 62(17):6822.
Vandemeulebroucke, J., Sarrut, D., Clarysse, P., et al.
(2007). The popi-model, a point-validated pixel-based
breathing thorax model. In XVth international con-
ference on the use of computers in radiation therapy
(ICCR), volume 2, pages 195–199.
IMPROVE 2024 - 4th International Conference on Image Processing and Vision Engineering
106