
models that can be effectively trained, potentially im-
peding the exploration of highly dense model archi-
tectures or the utilization of extensive datasets.
Future works could focus on enhancing the scala-
bility and efficiency of ML algorithms for processing
large-scale datasets stored in scientific repositories.
Moreover, leveraging emerging technologies such as
federated learning and edge computing holds promise
for enabling distributed and real-time analysis could
be an interesting feature for the system.
ACKNOWLEDGMENTS
The authors would like to thank Fundac¸
˜
ao de Am-
paro
`
a Pesquisa do Estado do Rio Grande do Sul -
FAPERGS, Conselho Nacional de Desenvolvimento
Cient
´
ıfico e Tecnol
´
ogico - CNPq (3305805/2021-
5, 23/2551-0000126-8), Fundac¸
˜
ao Grupo Botic
´
ario
(camp 001 2021) and Fundac¸
˜
ao Arauc
´
aria de Apoio
ao Desenvolvimento Cient
´
ıfico e Tecnol
´
ogico do Es-
tado do Paran
´
a (FA).
REFERENCES
Al Aghbari., Z. (2015). Mining big data - challenges
and opportunities. In Proceedings of the 17th Inter-
national Conference on Enterprise Information Sys-
tems - Volume 2: ICEIS, pages 379–384. INSTICC,
SciTePress.
Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984).
Classification and Regression Trees. Chapman and
Hall (Wadsworth and Inc.).
Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine learning, 20(3):273–297.
Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern
Classification (2Nd Edition). Wiley-Interscience.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
learning. MIT press.
Hachicha Belghith, E., Rioult, F., and Bouzidi, M. (2020).
Acoustic diversity classification using machine learn-
ing techniques: Towards automated marine big data
analysis. International journal on artificial intelli-
gence tools, 29(3n04):2060011.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. H. (2009). The weka data min-
ing software: An update. SIGKDD Explor. Newsl.,
11(1):10–18.
Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Ele-
ments of Statistical Learning: Data Mining, Inference,
and Prediction. Springer.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Ho, T. K. (1995). Random decision forests. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
17(8):832–844.
Hofmann, M. and Klinkenberg, R. (2016). RapidMiner:
Data mining use cases and business analytics appli-
cations. CRC Press.
Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,
Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V.,
et al. (2019). Searching for mobilenetv3. In Pro-
ceedings of the IEEE/CVF international conference
on computer vision, pages 1314–1324.
Hugging Face (2023). Hugging face - the ai community
building the future.
Kaggle (2023). Kaggle: Your machine learning and data
science community.
Randazzo, G., Italiano, F., Micallef, A., Tomasello, A., Cas-
setti, F. P., Zammit, A., D’Amico, S., Saliba, O., Cas-
cio, M., Cavallaro, F., Crupi, A., Fontana, M., Gre-
gorio, F., Lanza, S., Colica, E., and Muzirafuti, A.
(2021). Webgis implementation for dynamic mapping
and visualization of coastal geospatial data: A case
study of bess project. Applied sciences, 11(17):8233.
Rocha, R. P. d., Gabriel Junior, R. F., Vanz, S. A. d. S.,
Borges, E. N., Azambuja, L. A. B., Caregnato, S. E.,
Pav
˜
ao, C. M. G., Passos, P. C. S. J., and Felicis-
simo, C. H. (2021). An
´
alise dos sistemas dspace e
dataverse para reposit
´
orios de dados de pesquisa com
acesso aberto. Revista Brasileira de Biblioteconomia
e Documentac¸
˜
ao. S
˜
ao Paulo. Vol. 17 (2021), p. 1-25.
Russell, S. J. and Norvig, P. (2009). Artificial Intelligence:
a modern approach. Pearson, 3 edition.
Say
˜
ao, L. F. and Sales, L. F. (2022). Plataformas de
gest
˜
ao de dados de pesquisa: expandindo o conceito
de reposit
´
orios de dados. Palabra clave (La Plata),
12(1):171–171.
Sen, P. C., Hajra, M., and Ghosh, M. (2020). Super-
vised classification algorithms in machine learning:
A survey and review. In Emerging Technology in
Modelling and Graphics: Proceedings of IEM Graph
2018, pages 99–111. Springer.
Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Introduc-
tion to Data Mining, (First Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.
Weisberg, S. (2005). Applied linear regression, volume 528.
John Wiley & Sons.
Yaqoob, I., Hashem, I. A. T., Gani, A., Mokhtar, S., Ahmed,
E., Anuar, N. B., and Vasilakos, A. V. (2016). Big
data: From beginning to future. International Journal
of Information Management, 36(6):1231–1247.
ICEIS 2024 - 26th International Conference on Enterprise Information Systems
416