
(1) more complex and larger datasets to assess the
scalability and generalisability of the findings, (2)
compare more complex DR techniques, such as some
proposed in the literature, and (3) investigate the im-
pact of hyperparameter optimisation for the DR tech-
niques, considering a multi-objective function opti-
mising both performance and processing times.
ACKNOWLEDGEMENTS
This research was funded by PRR – Plano de
Recuperac¸
˜
ao e Resili
ˆ
encia under the Next Gen-
eration EU from the European Union, Project
“Agenda ILLIANCE” [C644919832-00000035
— Project nº 46] and supported by the Cen-
tre for Mechanical Technology and Automation
(TEMA) through the projects UIDB/00481/2020
and UIDP/00481/2020 - Fundac¸
˜
ao para a Ci
ˆ
encia e
a Tecnologia, DOI 10.54499/UIDB/00481/2020
(https://doi.org/10.54499/UIDB/00481/2020)
and DOI 10.54499/UIDP/00481/2020
(https://doi.org/10.54499/UIDP/00481/2020). And
by FCT/MCTES through national funds and when
applicable co-funded EU funds under the project
UIDB/50008/2020-UIDP/50008/2020.
REFERENCES
Angelopoulos, A., Michailidis, E. T., Nomikos, N.,
Trakadas, P., Hatziefremidis, A., Voliotis, S., and Zahari-
adis, T. (2020). Tackling Faults in the Industry 4.0 Era-A
Survey of Machine-Learning Solutions and Key Aspects.
SENSORS, 20(1).
Anowar, F., Sadaoui, S., and Selim, B. (2021). Concep-
tual and empirical comparison of dimensionality reduc-
tion algorithms (pca, kpca, lda, mds, svd, lle, isomap, le,
ica, t-sne). Computer Science Review, 40:100378.
Ashraf, M., Anowar, F., Setu, J. H., Chowdhury, A. I.,
Ahmed, E., Islam, A., and Al-Mamun, A. (2023). A
survey on dimensionality reduction techniques for time-
series data. IEEE Access, 11:42909–42923.
Ayesha, S., Hanif, M. K., and Talib, R. (2020). Overview
and comparative study of dimensionality reduction tech-
niques for high dimensional data. Information Fusion,
59:44–58.
Cac¸
˜
ao, J., Antunes, M., Santos, J., and Gomes, D. (2024).
Intelligent assistant for smart factory power manage-
ment. In BV, E., editor, Procedia Computer Science, vol-
ume 232, 966-979. DOI: 10.1016/j.procs.2024.01.096.
Chhikara, P., Jain, N., Tekchandani, R., and Kumar, N.
(2020). Data dimensionality reduction techniques for in-
dustry 4.0: Research results, challenges, and future re-
search directions. Software: Practice and Experience,
52(3):658–688.
G
´
omez-Carmona, O., Casado-Mansilla, D., Kraemer, F. A.,
L
´
opez-de Ipi
˜
na, D., and Garc
´
ıa-Zubia, J. (2020). Ex-
ploring the computational cost of machine learning at the
edge for human-centric internet of things. Future Gener-
ation Computer Systems, 112:670–683.
Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S.,
Gani, A., and Ullah Khan, S. (2015). The rise of “big
data” on cloud computing: Review and open research
issues. Information Systems, 47:98–115.
Huang, X., Wu, L., and Ye, Y. (2019). A review on di-
mensionality reduction techniques. International Jour-
nal of Pattern Recognition and Artificial Intelligence,
33(10):1950017.
Jia, W., Sun, M., Lian, J., and Hou, S. (2022). Feature di-
mensionality reduction: a review. Complex & Intelligent
Systems, 8(3):2663–2693.
Maddikunta, P. K. R., Pham, Q.-V., B, P., Deepa, N., Dev,
K., Gadekallu, T. R., Ruby, R., and Liyanage, M. (2022).
Industry 5.0: A survey on enabling technologies and po-
tential applications. Journal of Industrial Information
Integration, 26:100257.
Moreno, C. and Fischmeister, S. (2017). Accurate measure-
ment of small execution times—getting around measure-
ment errors. IEEE Embedded Systems Letters, 9(1):17–
20.
Nahavandi, S. (2019). Industry 5.0—a human-centric solu-
tion. Sustainability, 11(16):4371.
Sisinni, E., Saifullah, A., Han, S., Jennehag, U., and Gid-
lund, M. (2018). Industrial internet of things: Chal-
lenges, opportunities, and directions. IEEE Transactions
on Industrial Informatics, 14(11):4724–4734.
Solorio-Fern
´
andez, S., Carrasco-Ochoa, J. A., and
Mart
´
ınez-Trinidad, J. F. (2019). A review of unsuper-
vised feature selection methods. Artificial Intelligence
Review, 53(2):907–948.
Swana, E. F., Doorsamy, W., and Bokoro, P. (2022). Tomek
link and smote approaches for machine fault classifica-
tion with an imbalanced dataset. Sensors, 22(9):3246.
Xu, X., Lu, Y., Vogel-Heuser, B., and Wang, L. (2021). In-
dustry 4.0 and industry 5.0—inception, conception and
perception. Journal of Manufacturing Systems, 61:530–
535.
Yao, X., Zhou, J., Zhang, J., and Boer, C. R. (2017). From
intelligent manufacturing to smart manufacturing for in-
dustry 4.0 driven by next generation artificial intelligence
and further on. In 2017 5th International Conference on
Enterprise Systems (ES). IEEE.
Zebari, R., Abdulazeez, A., Zeebaree, D., Zebari, D., and
Saeed, J. (2020). A comprehensive review of dimen-
sionality reduction techniques for feature selection and
feature extraction. Journal of Applied Science and Tech-
nology Trends, 1(2):56–70.
Optimising Data Processing in Industrial Settings: A Comparative Evaluation of Dimensionality Reduction Approaches
129