
REFERENCES
Ambr
´
osio, L., Linhares, H., David, J. M. N., Braga, R., Ar-
bex, W., Campos, M. M., and Capilla, R. (2021). En-
hancing the reuse of scientific experiments for agricul-
tural software ecosystems. Journal of Grid Comput-
ing, 19:1–24.
Berhe, A., Bariagabre, S. A., and Balehegn, M. (2020). Es-
timation of greenhouse gas emissions from three live-
stock production systems in ethiopia. International
Journal of Climate Change Strategies and Manage-
ment, 12(5):669–685.
Desjardins, R. L., Worth, D. E., Verg
´
e, X. P., Maxime, D.,
Dyer, J., and Cerkowniak, D. (2012). Carbon footprint
of beef cattle. Sustainability, 4(12):3279–3301.
Embrapa (2023a). Dairy livestock in brazil and global
warming. Technical report, Embrapa. Accessed:
2024-01-22.
Embrapa (2023b). Drinking milk helps livestock become
carbon neutral, says embrapa. Accessed: 2024-01-22.
Feilmayr, C. and W
¨
ob, W. (2016). An analysis of ontologies
and their success factors for application to business.
Data & Knowledge Engineering, 101:1–23.
Gomes, J., Esteves, I., Neto, V. V. G., David, J. M. N.,
Braga, R., Arbex, W., Kassab, M., and de Oliveira,
R. F. (2023). A scientific software ecosystem archi-
tecture for the livestock domain. Information and Soft-
ware Technology, 160:107240.
Greenfield, P. (2023). As carbon offsetting faces a ’cred-
ibility revolution’, shoppers should be wary. The
Guardian.
IPCC (2021). Climate change 2021: The physical science
basis - summary for policymakers. Technical report,
Intergovernmental Panel on Climate Change (IPCC).
Accessed: 2024-01-22.
Liu, C., Wang, X., Bai, Z., Wang, H., and Li, C. (2023).
Does digital technology application promote carbon
emission efficiency in dairy farms? evidence from
china. Agriculture, 13(4):904.
Magaldi, H., Braga, R., Arbex, W., Campos, M., Borges,
C., David, J., and Campos, F. (2017). Use of on-
tologies and visualization techniques to support re-
search in feed efficiency of dairy cattle. In: Brazilian
Congress of Agroinformatics, 11th, 2017, Campinas.
Science of...
Mazzetto, A. M., Falconer, S., and Ledgard, S. (2022).
Mapping the carbon footprint of milk production from
cattle: A systematic review. Journal of Dairy Science.
Nicola, A. D. and Missikoff, M. (2016). A lightweight
methodology for rapid ontology engineering. Com-
munications of the ACM, 59(3):79–86.
O’Brien, D., Capper, J., Garnsworthy, P., Grainger, C., and
Shalloo, L. (2014). A case study of the carbon foot-
print of milk from high-performing confinement and
grass-based dairy farms. Journal of dairy science,
97(3):1835–1851.
Pirlo, G. and Car
`
e, S. (2013). A simplified tool for esti-
mating carbon footprint of dairy cattle milk. Italian
Journal of Animal Science, 12(4):e81.
Santos, L. F., Gomes, J., Braga, R., David, J. M. N.,
and Stroele, V. (2023). Towards a seco for carbon
credit control. In 2023 IEEE/ACM 11th International
Workshop on Software Engineering for Systems-of-
Systems and Software Ecosystems (SESoS), pages 13–
21. IEEE.
Singh, A., Mishra, N., Ali, S. I., Shukla, N., and Shankar,
R. (2015). Cloud computing technology: Reducing
carbon footprint in beef supply chain. International
Journal of Production Economics, 164:462–471.
Siqueira, F. and Caviglioni, M. (2021). Metagenomics, nan-
otechnology, and animal nutrition: alternatives to an-
tibiotic use and greenhouse gas mitigation.
Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., and
Katz, Y. (2007). Pellet: A practical OWL-DL rea-
soner. Journal of Web Semantics, 5(2):51–53.
Soares, N., Braga, R., Maria N. David, J., Beatriz Siqueira,
K., da Silva Nogueira, T., Wendelin Campos, E.,
Augusto Priamo Moares, E., and Vanessa Zabala
Capriles Goliatt, P. (2021). Redic: Recommenda-
tion of digital influencers of brazilian artisanal cheese:
Redic: Recomendac¸
˜
ao de influenciadores digitais do
queijo artesanal brasileiro. In XVII Brazilian Sympo-
sium on Information Systems, pages 1–8.
SWRL, A. (2004). Semantic web rule language combining
owl and ruleml. W3C Member Submission (May 21,
2004), http://www. w3. org/Submission/SWRL/(last
visited March 2011).
Tedeschi, L. O., Abdalla, A. L.,
´
Alvarez, C., Anuga, S. W.,
Arango, J., Beauchemin, K. A., Becquet, P., Berndt,
A., Burns, R., De Camillis, C., et al. (2022). Quantifi-
cation of methane emitted by ruminants: a review of
methods. Journal of Animal Science, 100(7):skac197.
Vale Fund (2022). Carbon market report-fv ecosecurities.
Technical report, Vale Fund. Accessed: 2024-01-22.
Verra (2020). Methodology for the reduction of enteric
methane emissions from ruminants through the use
of feed ingredients. Methodology, Verra. Accessed:
2024-01-22.
Verra (2022). Verified carbon standard (vcs) program. https:
//verra.org/our-work/verified-carbon-standard/. Ac-
cessed: 2024-01-22.
Vogel, E. and Beber, C. L. (2022). Carbon footprint and mit-
igation strategies among heterogeneous dairy farms
in paran
´
a, brazil. Journal of Cleaner Production,
349:131404.
Wang, Y., Yang, Y., Qin, Z., Yang, Y., and Li, J. (2023).
A literature review on the application of digital tech-
nology in achieving green supply chain management.
Sustainability, 15(11):8564.
WayCarbon (2022). Opportunities for brazil in carbon mar-
kets. Accessed: 2024-01-22.
World Wide Web Consortium (2004). OWL Web Ontology
Language. World Wide Web Consortium Recommen-
dation.
CarbonSECO for Livestock: A Service Suite to Help in Carbon Emission Decisions
99