
mapping: Toward the robust-perception age. IEEE
Transactions on robotics, 32(6):1309–1332.
Cantzler, H. (1981). Random sample consensus (ransac).
Institute for Perception, Action and Behaviour, Divi-
sion of Informatics, University of Edinburgh, 3.
Cao, J., Liao, X., and Hall, E. (1999). Reactive naviga-
tion for autonomous guided vehicle using neuro-fuzzy
techniques. 3837.
Cheng, J., Zhang, L., Chen, Q., Hu, X., and Cai, J. (2022).
A review of visual slam methods for autonomous driv-
ing vehicles. Engineering Applications of Artificial
Intelligence, 114:104992.
da Cruz J
´
unior, G. P. et al. (2021). Localizac¸
˜
ao e mapea-
mento para rob
ˆ
os m
´
oveis em ambientes confinados
baseado em fus
˜
ao de lidar com odometrias de rodas
e sensor inercial.
Dudek, G. and Jenkin, M. (2010). Computational principles
of mobile robotics. Cambridge university press.
Grisetti, G., Stachniss, C., and Burgard, W. (2007).
Improved techniques for grid mapping with rao-
blackwellized particle filters. IEEE transactions on
Robotics, 23(1):34–46.
Khan, S. and Ahmmed, M. K. (2016). Where am i?
autonomous navigation system of a mobile robot in
an unknown environment. 2016 5th International
Conference on Informatics, Electronics and Vision
(ICIEV), pages 56–61.
Kurt-Yavuz, Z. and Yavuz, S. (2012). A comparison of ekf,
ukf, fastslam2. 0, and ukf-based fastslam algorithms.
In 2012 IEEE 16th International Conference on In-
telligent Engineering Systems (INES), pages 37–43.
IEEE.
Li, Z., Zhao, X., and Li, Y. (2023). Dense reconstruc-
tion of substation room with lsd slam. In Third In-
ternational Conference on Artificial Intelligence, Vir-
tual Reality, and Visualization (AIVRV 2023), volume
12923, pages 193–201. SPIE.
Miranto, H. A., Jati, A. N., and Setianingsih, C. (2019). Re-
alization of point cloud maps using ros & visual sen-
sor on raspberry pi 3 based mobile robot. 2019 4th
International Conference on Information Technology,
Information Systems and Electrical Engineering (ICI-
TISEE), pages 517–522.
Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015).
Orb-slam: a versatile and accurate monocular slam
system. IEEE transactions on robotics, 31(5):1147–
1163.
Mur-Artal, R. and Tard
´
os, J. D. (2016). Orb-slam2:
An open-source slam system for monocular, stereo,
and rgb-d cameras. IEEE Transactions on Robotics,
33:1255–1262.
Ni, J., Wang, X., Gong, T., and Xie, Y. (2022). An improved
adaptive orb-slam method for monocular vision robot
under dynamic environments. International Journal
of Machine Learning and Cybernetics, 13(12):3821–
3836.
Ran, T., Yuan, L., and Zhang, J. (2021). Scene perception
based visual navigation of mobile robot in indoor en-
vironment. ISA transactions, 109:389–400.
Rublee, E., Rabaud, V., Konolige, K., and Bradski, G.
(2011). Orb: An efficient alternative to sift or surf.
In 2011 International conference on computer vision,
pages 2564–2571. Ieee.
Serrata, A. A. J., Yang, S., and Li, R. (2017). An intelli-
gible implementation of fastslam2.0 on a low-power
embedded architecture. EURASIP Journal on Embed-
ded Systems, 2017:1–11.
Skoltech Robotics (2024). RPLidar Python Module Repos-
itory. https://github.com/SkoltechRobotics/rplidar.
Accessed on: 01/31/24.
Soares, J., Gattass, M., and Meggiolaro, M. (2022). Ma-
peamento e localizac¸
˜
ao simult
ˆ
aneos em ambientes
din
ˆ
amicos usando detecc¸
˜
ao de pessoas. In Anais Es-
tendidos do XIV Simp
´
osio Brasileiro de Rob
´
otica e
XIX Simp
´
osio Latino-Americano de Rob
´
otica, pages
109–120, Porto Alegre, RS, Brasil. SBC.
Son, D. T., The, A. M., Duong, T. D., Chuong, L. V.,
Cuong, T. H., and Phuong, H. S. (2021). The practice
of mapping-based navigation system for indoor robot
with rplidar and raspberry pi. 2021 International Con-
ference on System Science and Engineering (ICSSE),
pages 279–282.
Toroslu, I. and Do
˘
gan, M. (2018). Effective sensor fusion
of a mobile robot for slam implementation. 2018 4th
International Conference on Control, Automation and
Robotics (ICCAR), pages 76–81.
ˇ
Culjak, I., Abram, D., Pribani
´
c, T., D
ˇ
zapo, H., and Cifrek,
M. (2012). A brief introduction to opencv. 2012
Proceedings of the 35th International Convention
MIPRO, pages 1725–1730.
ˇ
St
ˇ
ep
´
an, P., Kral, L., Kulich, M., and Preu’il, L. (1999).
Open control architecture for mobile robot. IFAC Pro-
ceedings Volumes, 32:8434–8439.
Weiss, U. and Biber, P. (2011). Plant detection and map-
ping for agricultural robots using a 3d lidar sensor.
Robotics and autonomous systems, 59(5):265–273.
Zong, W., Chen, L., Zhang, C., Wang, Z., and Chen, Q.
(2017). Vehicle model based visual-tag monocular
orb-slam. 2017 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pages 1441–
1446.
ICEIS 2024 - 26th International Conference on Enterprise Information Systems
954