
Cryptographic Suite for Algebraic Lattices (2021).
Dilithium. https://pq-crystals.org/dilithium/. [Online;
accessed 2024-02-05].
eBACS (2019). eBACS: ECRYPT Benchmarking of Cryp-
tographic Systems. https://bench.cr.yp.to/. [Online;
accessed 2024-02-05].
Fouque, P.-A., Hoffstein, J., Kirchner, P., Lyubashevsky, V.,
Pornin, T., Prest, T., Ricosset, T., Seiler, G., Whyte,
W., and Zhang, Z. (2021). Falcon. https://falcon-sig
n.info/. [Online; accessed 2024-02-05].
Fujitsu Limited (2023). Fujitsu quantum simulator assesses
vulnerability of RSA cryptosystem to potential quan-
tum computer cryptography threat. https://www.fujits
u.com/global/about/resources/news/press-releases/20
23/0123-01.html. [Online; accessed 2024-02-05].
Grover, L. K. (1996). A fast quantum mechanical algorithm
for database search. https://arxiv.org/abs/quant-ph/96
05043 [Online; accessed 2024-02-05].
Huelsing, A., Butin, D., Gazdag, S.-L., Rijneveld, J., and
Mohaisen, A. (2018). XMSS: eXtended Merkle Sig-
nature Scheme. RFC 8391. https://www.rfc-editor.or
g/info/rfc8391 [Online; accessed 2024-02-05].
Johnson, D., Menezes, A., and Vanstone, S. (2001). The el-
liptic curve digital signature algorithm (ecdsa). Inter-
national Journal of Information Security, 1(1):36–63.
Li, H., Tang, Y., Que, Z., and Zhang, J. (2022). FPGA Ac-
celerated Post-Quantum Cryptography. IEEE Trans-
actions on Nanotechnology, 21:685–691. https://ieee
xplore.ieee.org/abstract/document/9931964 [Online;
accessed 2024-02-05].
Lyubashevsky, V. (2009). Fiat-shamir with aborts: Appli-
cations to lattice and factoring-based signatures. In
Matsui, M., editor, Advances in Cryptology – ASI-
ACRYPT 2009, pages 598–616, Berlin, Heidelberg.
Springer Berlin Heidelberg. https://www.iacr.org/a
rchive/asiacrypt2009/59120596/59120596.pdf [On-
line; accessed 2024-02-05].
Marzougui, S. and Kr
¨
amer, J. (2019). Post-quantum cryp-
tography in embedded systems. In Proceedings of
the 14th International Conference on Availability, Re-
liability and Security, ARES ’19, New York, NY,
USA. Association for Computing Machinery. https:
//doi.org/10.1145/3339252.3341475 [Online; ac-
cessed 2024-02-05].
Mavroeidis, V., Vishi, K., Zych, M. D., and Jøsang, A.
(2018). The Impact of Quantum Computing on
Present Cryptography. International Journal of Ad-
vanced Computer Science and Applications, 9(3). ht
tp://dx.doi.org/10.14569/IJACSA.2018.090354 [On-
line; accessed 2024-02-05].
NIST (2016). Submission Requirements and Evaluation
Criteria for the Post-Quantum Cryptography Stan-
dardization Process. https://csrc.nist.gov/CSRC/m
edia/Projects/Post-Quantum-Cryptography/docume
nts/call-for-proposals-final-dec-2016.pdf. [Online;
accessed 2024-02-05].
NIST (2017a). Post-Quantum Cryptography Standardiza-
tion. https://csrc.nist.gov/projects/post-quantum-cry
ptography/post-quantum-cryptography-standardizati
on. [Online; accessed 2024-02-05].
NIST (2017b). Round 1 Submissions. https://csrc.nist.go
v/Projects/post-quantum-cryptography/post-quantum
-cryptography-standardization/round-1-submissions.
[Online; accessed 2024-02-05].
NIST (2022). Selected Algorithms 2022. https://csrc.nist.
gov/Projects/post-quantum-cryptography/selected-a
lgorithms-2022. [Online; accessed 2024-02-05].
Open Quantum Safe (2023). Git code repository. https:
//github.com/open-quantum-safe/liboqs/tree/d61d81
c526da8bb62e363f5a75191689572151cb. [Online;
accessed 2024-02-05].
Open Quantum Safe (2024). Software for the transition to
quantum-resistant cryptography. https://openquantu
msafe.org/. [Online; accessed 2024-02-05].
pqax (2021). Git code repository. https://github.com/mup
q/pqax/tree/331415e1c309175674c8c700b96b0164
2b3241db. [Online; accessed 2024-02-05].
Raspberry Pi Ltd (2024a). Operating system images. https:
//www.raspberrypi.com/software/operating-systems/.
[Online; accessed 2024-02-05].
Raspberry Pi Ltd (2024b). Raspberry pi homepage. https:
//www.raspberrypi.com/. [Online; accessed 2024-02-
05].
Regev, O. (2009). On lattices, learning with errors, random
linear codes, and cryptography. J. ACM, 56(6). https://
doi.org/10.1145/1568318.1568324 [Online; accessed
2024-02-05].
Shor, P. (1994). Algorithms for quantum computation: dis-
crete logarithms and factoring. In Proceedings 35th
Annual Symposium on Foundations of Computer Sci-
ence, pages 124–134. https://ieeexplore.ieee.org/do
cument/365700 [Online; accessed 2024-02-05].
Shoup, V. (2001). A proposal for an ISO standard for public
key encryption. IACR Cryptol. ePrint Arch., page 112.
SPHINCS+ (2023). Sphincs+. https://sphincs.org/. [Online;
accessed 2024-02-05].
Tasopoulos, G., Dimopoulos, C., Fournaris, A. P., Zhao,
R. K., Sakzad, A., and Steinfeld, R. (2023). En-
ergy consumption evaluation of post-quantum tls 1.3
for resource-constrained embedded devices. In Pro-
ceedings of the 20th ACM International Conference
on Computing Frontiers, CF ’23, page 366–374, New
York, NY, USA. Association for Computing Machin-
ery. https://doi.org/10.1145/3587135.3592821 [On-
line; accessed 2024-02-05].
IoTBDS 2024 - 9th International Conference on Internet of Things, Big Data and Security
334