ACKNOWLEDGEMENTS
This research paper is part of [project MORE – Munich
Mobility Research Campus] and funded by dtec.bw
– Digitalization and Technology Research Center of
the Bundeswehr. dtec.bw is funded by the European
Union – NextGenerationEU.
REFERENCES
Britzelmeier, A. and Gerdts, M. (2020). A nonsmooth
newton method for linear model-predictive control
in tracking tasks for a mobile robot with obstacle
avoidance. IEEE Control Systems Letters, PP:1–1.
Burger, M. and Gerdts, M. (2019). DAE Aspects in Vehicle
Dynamics and Mobile Robotics, pages 37–80. Springer
International Publishing, Cham.
Chachuat, B. (2007). Nonlinear and dynamic optimization:
From theory to practice.
Chen, X., Nashed, Z., and Qi, L. (2000). Smoothing methods
and semismooth methods for nondifferentiable oper-
ator equations. SIAM Journal on Numerical Analysis,
38(4):1200–1216.
Clarke, F. H. (1990). Optimization and Nonsmooth Anal-
ysis. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, USA.
Diehl, M., Bock, H. G., and Schl
¨
oder, J. P. (2005). A real-
time iteration scheme for nonlinear optimization in
optimal feedback control. SIAM Journal on Control
and Optimization, 43(5):1714–1736.
Emam, M. and Gerdts, M. (2022). Deterministic operating
strategy for multi-objective nmpc for safe autonomous
driving in urban traffic. In Proceedings of the 8th
International Conference on Vehicle Technology and
Intelligent Transport Systems - VEHITS, pages 152–
161.
Emam, M. and Gerdts, M. (2023). Sensitivity updates
for linear-quadratic optimization problems in multi-
step model predictive control. Journal of Physics:
Conference Series, 2514(1):012008.
Fischer, A. (1992). A special newton-type optimization
method. Optimization, 24(3-4):269–284.
Gerdts, M. (2023). Optimal control of ODEs and DAEs. De
Gruyter Oldenbourg, Munich, Germany, 2 edition.
Gerdts, M. and Kunkel, M. (2008). A nonsmooth newton’s
method for discretized optimal control problems with
state and control constraints. Journal of Industrial &
Management Optimization, 4(2):247–270.
Gerdts, M. and Kunkel, M. (2009). A globally conver-
gent semi-smooth newton method for control-state
constrained dae optimal control problems. Computa-
tional Optimization and Applications, 48(3):601–633.
Graham, R. (1972). An efficient algorith for determining
the convex hull of a finite planar set. Information
Processing Letters, 1(4):132–133.
Gr
¨
une, L. and Pannek, J. (2011). Nonlinear Model Predictive
Control: Theory and Algorithms. Communications and
Control Engineering. Springer, London, England.
Gutjahr, B., Gr
¨
oll, L., and Werling, M. (2017). Lateral
vehicle trajectory optimization using constrained linear
time-varying mpc. IEEE Transactions on Intelligent
Transportation Systems, 18(6):1586–1595.
Harwood, D. W. and Mason, J. M. (1994). Horizontal curve
design for passenger cars and trucks. Transportation
Research Record.
Hoss, M., Scholtes, M., and Eckstein, L. (2022). A review of
testing object-based environment perception for safe
automated driving. Automotive Innovation, 5(3):223–
250.
Hughes, J. F., McGuire, M. S., Foley, J., Sklar, D. F., Feiner,
S. K., Akeley, K., Van Dam, A., and Foley, J. D. (2009).
Computer Graphics: Principles and Practice. Addison-
Wesley Educational, Boston, MA, 3 edition.
Jiang, H. (1999). Global convergence analysis of the general-
ized newton and gauss-newton methods of the fischer-
burmeister equation for the complementarity problem.
Mathematics of Operations Research, 24(3):529–543.
Jiang, H. and Qi, L. (1997). A new nonsmooth equa-
tions approach to nonlinear complementarity problems.
SIAM Journal on Control and Optimization, 35(1):178–
193.
Jiang, H. and Ralph, D. (1998). Global and Local
Superlinear Convergence Analysis of Newton-Type
Methods for Semismooth Equations with Smooth Least
Squares, pages 181–209. Springer US.
Morari, M. and H. Lee, J. (1999). Model predictive control:
past, present and future. Computers & Chemical
Engineering, 23(4–5):667–682.
Musa, A., Pipicelli, M., Spano, M., Tufano, F., De Nola,
F., Di Blasio, G., Gimelli, A., Misul, D. A., and
Toscano, G. (2021). A review of model predictive
controls applied to advanced driver-assistance systems.
Energies, 14(23).
OpenStreetMap contributors (2017). Planet dump retrieved
from https://planet.osm.org . https://www.openstreet
map.org.
Palma, V. G. (2015). Robust Updated MPC Schemes. PhD
thesis, Universit
¨
at Bayreuth, Bayreuth.
Parekh, D., Poddar, N., Rajpurkar, A., Chahal, M., Kumar,
N., Joshi, G. P., and Cho, W. (2022). A review
on autonomous vehicles: Progress, methods and
challenges. Electronics, 11(14):2162.
Qin, H., Shao, S., Wang, T., Yu, X., Jiang, Y., and Cao,
Z. (2023). Review of autonomous path planning
algorithms for mobile robots. Drones, 7(3):211.
Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., and Ng, A. Y. (2009). Ros:
an open-source robot operating system. In ICRA
Workshop on Open Source Software.
Rawlings, J. B. and Mayne, D. Q. (2009). Model Predictive
Control: Theory and Design. Nob Hill Pub, LLC,
California, USA.
Sussmann, H. and Willems, J. (1997). 300 years of optimal
control: From the brachystochrone to the maximum
principle. IEEE Control Systems, 17(3):32–44.
Sutherland, I. E. and Hodgman, G. W. (1974). Reentrant
polygon clipping. Communications of the ACM,
17(1):32–42.
VEHITS 2024 - 10th International Conference on Vehicle Technology and Intelligent Transport Systems
188