
Table 3: Average BER comparison with other watermarking methods.
Attacks (Xiang et al., 2015) (Xue et al., 2019) (Korany et al., 2023) (Hu and Lee, 2019)
The proposed
Method
Resampling 0,53 0,5913 0,4676 0 0
AddNoise 3,4835 5,0429 2 0.61 0
Amplify 0,0184 0,0398 0,0199 — 0
MP3 (128 kbps) 0,0184 0,0797 0,017 0.06 0,013
HighPassFilter 0,0184 0,0398 0,0376 — 0
LowPassFilter 0,0184 0,0398 0,039 0 0,01
Table 4: Integrity results of the proposed tamper detection
based on DCT-NNS-HPM watermarking for a sensitive sig-
nal.
Attack
Integrity
Rob
Dec
Ber frame Ber index Ber reel
Int
Dec
MP3 128 Robust 0,007 0,040 0,087 NO
MP3 64 Robust 0,040 0,040 0,120 NO
MP3 96 Robust 0,020 0,013 0,093 NO
Addbrumn 1 Robust 0,013 0,053 0,120 NO
Addbrumn 2 Robust 0,100 0,100 0,233 NO
Addbrumn 3 Robust 0,533 0,427 0,253 NO
Addbrumn 4 Robust 0,013 0,000 0,167 NO
Addbrumn 5 Robust 0,020 0,007 0,220 NO
Addbrumn 6 Robust 0,033 0,007 0,233 NO
Addbrumn 7 Robust 0,033 0,007 0,233 NO
Addbrumn 8 Robust 0,053 0,020 0,233 NO
Addbrumn 9 Robust 0,053 0,033 0,233 NO
Addbrumn 10 Robust 0,073 0,047 0,233 NO
Addbrumn 11 Robust 0,100 0,053 0,233 NO
Addfftnoise Non Robust 1,000 0,913 0,000 NO
Addnoise 1 Robust 0,013 0,060 0,100 NO
Addnoise 2 Robust 0,033 0,080 0,133 NO
Addnoise 3 Robust 0,047 0,060 0,127 NO
Addnoise 4 Robust 0,100 0,040 0,153 NO
Addnoise 5 Robust 0,107 0,047 0,160 NO
Addsinus Robust 0,007 0,073 0,120 NO
Amplify Robust 0,000 0,000 0,107 NO
Compressor Robust 0,173 0,033 0,167 NO
Copysample Non Robust 0,713 0,120 0,213 NO
Cutsample Non Robust 0,647 0,187 0,200 NO
Dynnoise Robust 0,147 0,027 0,147 NO
Echo Non Robust 0,613 0,067 0,253 NO
Exchange Robust 0,007 0,053 0,100 NO
Extrastereo 30 Robust 0,000 0,000 0,033 OK
Extrastereo 50 Robust 0,000 0,000 0,033 OK
Extrastereo 70 Robust 0,000 0,000 0,033 OK
FFT hipass Robust 0,027 0,060 0,127 NO
FFt Invert Non Roust 0,000 0,000 0,027 NO
FFt Real reverse Robust 0,007 0,073 0,120 NO
FFt Stat1 Non Robust 0,380 0,087 0,187 NO
FFt test Non Robust 0,380 0,087 0,200 NO
Flippsample Non Robust 0,287 0,067 0,167 NO
Invert Non Robust 0,000 0,000 0,033 OK
Lsbzero Robust 0,007 0,073 0,107 NO
Normalize Robust 0,007 0,073 0,087 NO
Nothing Robust 0,000 0,000 0,033 OK
Original Robust 0,000 0,000 0,033 OK
Rc-highpass Robust 0,227 0,040 0,207 NO
Rc-lowpass Robust 0,007 0,053 0,107 NO
Resample Robust 1,000 0,000 0,767 NO
Smooth Robust 0,027 0,047 0,080 NO
Smooth 2 Robust 0,060 0,067 0,153 NO
Stat1 Robust 0,000 0,000 0,040 NO
Stat2 Robust 0,007 0,053 0,100 NO
Voice remove Non Robust 1,000 0,000 0,767 NO
Zerocross Robust 0,040 0,080 0,147 NO
Zerolength Non Robust 0,480 0,060 0,173 NO
Zero remove Non Robust 0,240 0,067 0,173 NO
In addition, authentication and integrity are ade-
quately controlled thanks to the appropriate choice of
the extracted features to be hidden in the audio sig-
nal. These features constituting the relevant tonal
coefficients are extracted from the significant low-
frequency band of the cover audio signal after HPM
study.
Concerning blind detection, blind tamper detec-
tion, and blind-recovery processes, they are accom-
Table 5: Tamper detection results of the proposed tamper
detection based on DCT-NNS-HPM watermarking for sen-
sitive signals.
tamper detection
Attack
Rob
Dec
Int
Dec
Sync
DAE
Tamp
detect
MP3 128 Robust NO Blind OK OK
MP3 64 Robust NO Blind OK OK
MP3 96 Robust NO Blind OK OK
Addbrumn 100 Robust NO Blind OK OK
Addbrumn10100 Robust NO Blind OK OK
Addbrumn 1100 Robust NO Blind OK OK
Addbrumn 2100 Robust NO Blind OK OK
Addbrumn 3100 Robust NO Blind OK OK
Addbrumn 4100 Robust NO Blind OK OK
Addbrumn 5100 Robust NO Blind OK OK
Addbrumn 6100 Robust NO Blind OK OK
Addbrumn 7100 Robust NO Blind OK OK
Addbrumn 8100 Robust NO Blind OK OK
Addbrumn 9100 Robust NO Blind OK OK
Addfftnoise Non Robust NO Semi-blind OK OK
Addnoise 100 Robust NO Blind OK OK
Addnoise 300 Robust NO Blind OK OK
Addnoise 500 Robust NO Blind OK OK
Addnoise 700 Robust NO Blind OK OK
Addnoise 900 Robust NO Blind OK OK
Addsinus Robust NO Blind OK OK
Amplify Robust NO Blind OK OK
Compressor Robust NO Blind OK OK
Copysample Non Robust NO Semi-blind OK OK
Cutsample Non Robust NO Semi-blind OK OK
Dynnoise Robust NO Blind OK OK
Echo Non Robust NO Semi-blind OK OK
Exchange Robust NO Blind OK OK
Extrastereo 30 Robust OK
Extrastereo 50 Robust OK
Extrastereo 70 Robust OK
FFT hipass Robust NO Blind OK OK
FFt Invert Non Roust NO Semi-blind OK OK
FFt Real reverse Robust NO Blind OK OK
FFt Stat1 Non Robust NO Semi-blind OK OK
FFt test Non Robust NO Semi-blind OK OK
Flippsample Non Robust NO Semi-blind OK OK
Invert Non Robust OK Semi-blind OK OK
Lsbzero Robust NO Blind OK OK
Normalize Robust NO Blind OK OK
Nothing Robust OK
Original Robust OK
Rc-highpass Robust NO Blind OK OK
Rc-lowpass Robust NO Blind OK OK
Resample Robust NO Blind OK OK
Smooth Robust NO Blind OK OK
Smooth 2 Robust NO Blind OK OK
Stat1 Robust NO Blind OK OK
Stat2 Robust NO Blind OK OK
Voice remove Non Robust NO Semi-blind OK OK
Zerocross Robust NO Blind OK OK
Zerolength Non Robust NO Semi-blind OK OK
Zero remove Non Robust NO Semi-blind OK OK
plished by using an MLP-based denoising autoen-
coder associated with a re-synchronization mecha-
nism. The DAE based-re-synchronization mecha-
nism permits during simulation in the detection stage
to delete noises and correct tampers even after de-
synchronization problems, attacks or audio signal ma-
nipulations. Copyright protection, authentication, in-
tegrity control, blind tamper detection and blind in-
vertibility are reached efficaciously. A comparable
ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering
750