Havard, V., Jeanne, B., Savatier, X., and Baudry, D. (2017).
Inoovas-Industrial ontology for operation in virtual
and augmented scene: The architecture. In Proc.
CoDIT, pages 0300–0305, New York. IEEE.
Herbert, B., Ens, B., Weerasinghe, A., Billinghurst, M., and
Wigley, G. (2018). Design considerations for combin-
ing augmented reality with intelligent tutors. Comput-
ers & Graphics, 77:166–182.
Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S.,
Grosof, B., and Dean, M. (2004). SWRL: A seman-
tic web rule language combining OWL and RuleML.
https://www.w3.org/submissions/SWRL/. Accessed:
2023-09-01.
Häfner, P., Häfner, V., Wicaksono, H., and Ovtcharova, J.
(2013). Semi-automated ontology population from
building construction drawings. In Proc. KEOD,
pages 379–386, Setúbal, Portugal. SciTePress.
Häfner, V. (2017). Modelling smart virtual en-
vironments. In 4. Fachkonferenz zu VR/AR-
Technologien in Anwendung und Forschung an der
Professur Werkzeugmaschinen und Umformtechnik,
pages 151–162, Chemnitz, Deutschland. Technische
Universität Chemnitz. https://var2.org/downloads/
Tagungsband-VAR2-2017_digital.pdf.
Häfner, V., Benedix, A.-C., and Häfner, P. (2020). Au-
tomatisierung des virtualisierungsprozesses im anla-
genbau. Zeitschrift für wirtschaftlichen Fabrikbetrieb,
115(3):148–152.
Jacinto, A. S. and Oliveira, J. M. P. (2008). An
ontology-based architecture for intelligent tutoring
systems. Interdisciplinary Studies in Computer Sci-
ence, 19(1):25–35.
Laine, J., Lindqvist, T., Korhonen, T., and Hakkarainen, K.
(2022). Systematic review of intelligent tutoring sys-
tems for hard skills training in virtual reality environ-
ments. International Journal of Technology in Educa-
tion and Science, 6(2):178–203.
Michels, F. L. and Häfner, V. (2022). Automating virtu-
alization of machinery for enabling efficient virtual
engineering methods. Frontiers in Virtual Reality,
3:1034431.
Muñoz Merino, P. J. and Kloos, C. D. (2008). An archi-
tecture for combining semantic web techniques with
intelligent tutoring systems. In Proc. ITS, pages 540–
550. Springer, Berlin, Heidelberg.
Musen, M. A. (2015). The protégé project: A look back and
a look forward. AI Matters, 1(4):4–12.
OASIS Standard (2015). MQTT Version 3.1.1. https://docs.
oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.
Accessed: 2023-07-03.
O’Connor, M. and Das, A. (2009). SQWRL: a query lan-
guage for OWL. In Proc. OWLED, page 208–215,
Aachen, Germany. CEUR-WS.org.
Pan, J. Z. (2009). Resource Description Framework, pages
71–90. Springer, Berlin, Heidelberg.
Richard, K., Havard, V., and Baudry, D. (2021a).
Authoring-by-doing: An event-based interaction
module for virtual reality scenario authoring frame-
work. In Proc. AVR, pages 519–527, Cham. Springer.
Richard, K., Havard, V., His, J., and Baudry, D. (2021b).
INTERVALES: INTERactive Virtual and Augmented
framework for industriaL Environment and Scenarios.
Advanced Engineering Informatics, 50:101425.
Ruthenbeck, G. S. and Reynolds, K. J. (2015). Virtual real-
ity for medical training: the state-of-the-art. Journal
of Simulation, 9(1):16–26.
Schiavi, B., Havard, V., Beddiar, K., and Baudry, D. (2021).
Semi-automatic generation of virtual reality procedu-
ral scenarios for operation in construction based on
4D building information models. In Proc. CONVR,
pages 104–111, Middlesbrough, UK. Teesside Uni-
versity Press.
U.S. National Academy of Engineering (2017).
NAE grand challenges for engineering.
http://www.engineeringchallenges.org/File.aspx?
id=11574&v=34765dff. Accessed: 2023-09-14.
Vaughan, N., Dubey, V. N., Wainwright, T. W., and Middle-
ton, R. G. (2016). A review of virtual reality based
training simulators for orthopaedic surgery. Medical
engineering & physics, 38(2):59–71.
Vesin, B., Ivanovi
´
c, M., Klašnja-Mili
´
cevi
´
c, A., and Budi-
mac, Z. (2012). Protus 2.0: Ontology-based seman-
tic recommendation in programming tutoring system.
Expert Systems with Applications, 39(15):12229–
12246.
Walczak, K., Floty
´
nski, J., Strugała, D., Strykowski, S.,
Soboci
´
nski, P., Gał ˛azkiewicz, A., Górski, F., Bu
´
n, P.,
Zawadzki, P., Wielgus, M., and Wojciechowski, R.
(2020). Semantic modeling of virtual reality training
scenarios. In Proc. EuroVR, pages 128–148. Springer,
Cham.
Wen, Y., Zhu, X., and Zhang, L. (2022). CQACD: A
concept question-answering system for intelligent tu-
toring using a domain ontology with rich semantics.
IEEE Access, 10:67247–67261.
Wicaksono, H., Dobreva, P., Häfner, P., and Rogalski, S.
(2013). Ontology development towards expressive
and reasoning-enabled building information model for
an intelligent energy management system. In Proc.
KEOD, pages 38–47, Setúbal, Portugal. SciTePress.
World Wide Web Consortium (2013). SPARQL 1.1 Query
Language. https://www.w3.org/TR/sparql11-query/.
Accessed: 2023-08-25.
Zahabi, M. and Abdul Razak, A. M. (2020). Adaptive vir-
tual reality-based training: a systematic literature re-
view and framework. Virtual Reality, 24:725–752.
CSEDU 2024 - 16th International Conference on Computer Supported Education
152