Just, R., Jalali, D., and Ernst, M. D. (2014). Defects4J: A
database of existing faults to enable controlled test-
ing studies for Java programs. In 2014 International
Symposium on Software Testing and Analysis, ISSTA
2014 - Proceedings, pages 437–440. Association for
Computing Machinery, Inc.
Kamei, Y., Shihab, E., Adams, B., Hassan, A. E., Mockus,
A., Sinha, A., and Ubayashi, N. (2013). A large-
scale empirical study of just-in-time quality assur-
ance. IEEE Transactions on Software Engineering,
39(6):757–773.
Kechagia, M., Mechtaev, S., Sarro, F., and Harman, M.
(2022). Evaluating automatic program repair capa-
bilities to repair api misuses. IEEE Transactions on
Software Engineering, 48(7):2658–2679.
Kim, D., Nam, J., Song, J., and Kim, S. (2013). Auto-
matic patch generation learned from human-written
patches. In Proceedings - International Conference
on Software Engineering, pages 802–811. IEEE.
Kim, Y., Mun, S., Yoo, S., and Kim, M. (2019). Pre-
cise learn-to-rank fault localization using dynamic and
static features of target programs. ACM Trans. Softw.
Eng. Methodol., 28(4).
Le, D. X. B., Bao, L., Lo, D., Xia, X., Li, S., and Pasareanu,
C. (2019). On Reliability of Patch Correctness Assess-
ment. In Proceedings - International Conference on
Software Engineering, volume 2019-May, pages 524–
535. IEEE Computer Society.
Le, Q. V. and Mikolov, T. (2014). Distributed Representa-
tions of Sentences and Documents. Technical report.
Le, X.-B. D., Chu, D.-H., Lo, D., Le Goues, C., and Visser,
W. (2017). S3: syntax- and semantic-guided repair
synthesis via programming by examples. In Pro-
ceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2017, page
593–604, New York, NY, USA. Association for Com-
puting Machinery.
Le, X. B. D., Lo, D., and Goues, C. L. (2016). History
Driven Program Repair. In 2016 IEEE 23rd Inter-
national Conference on Software Analysis, Evolution,
and Reengineering (SANER), pages 213–224. IEEE.
Lin, B., Wang, S., Wen, M., and Mao, X. (2022).
Context-aware code change embedding for better
patch correctness assessment. ACM Trans. Softw. Eng.
Methodol., 31(3).
Liu, C., Gao, C., Xia, X., Lo, D., Grundy, J., and Yang,
X. (2021a). On the reproducibility and replicability
of deep learning in software engineering. ACM Trans.
Softw. Eng. Methodol., 31(1).
Liu, K., Li, L., Koyuncu, A., Kim, D., Liu, Z., Klein, J.,
and Bissyandé, T. F. (2021b). A critical review on
the evaluation of automated program repair systems.
Journal of Systems and Software, 171:110817.
Lutellier, T., Pang, L., Pham, V. H., Wei, M., and Tan, L.
(2019). ENCORE: Ensemble Learning using Convo-
lution Neural Machine Translation for Automatic Pro-
gram Repair.
Mechtaev, S., Yi, J., and Roychoudhury, A. (2015). Direct-
Fix: Looking for Simple Program Repairs. In 2015
IEEE/ACM 37th IEEE International Conference on
Software Engineering, pages 448–458. IEEE.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean,
J. (2013). Distributed Representations of Words and
Phrases and their Compositionality. Technical report.
Monperrus, M. (2014). A critical review of "auto-
matic patch generation learned from human-written
patches": essay on the problem statement and the eval-
uation of automatic software repair. In Proceedings of
the 36th International Conference on Software Engi-
neering - ICSE 2014, pages 234–242, New York, New
York, USA. ACM Press.
Ortin, F., Rodriguez-Prieto, O., Pascual, N., and Garcia, M.
(2020). Heterogeneous tree structure classification to
label java programmers according to their expertise
level. Future Gener. Comput. Syst., 105(C):380–394.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Penrose, L. S. (1946). The elementary statistics of major-
ity voting. Journal of the Royal Statistical Society,
109(1):53–57.
Phung, Q.-N., Kim, M., and Lee, E. (2022). Identifying
incorrect patches in program repair based on meaning
of source code. IEEE Access, 10:12012–12030.
Polikar, R. (2012). Ensemble learning. Ensemble machine
learning: Methods and applications, pages 1–34.
Rehurek, R. and Sojka, P. (2010). Software Framework for
Topic Modelling with Large Corpora. Proceedings of
the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45–50.
RFECV documentation (2024). Rfecv documentation.
https://scikit-learn.org/stable/modules/generated/
sklearn.feature_selection.RFECV.html.
Sarangi, S., Sahidullah, M., and Saha, G. (2020). Optimiza-
tion of data-driven filterbank for automatic speaker
verification. Digital Signal Processing, 104:102795.
Scikit-learn documentation (2024). Scikit-learn documen-
tation. https://scikit-learn.org/stable/user_guide.html.
Scikit-learn StackingRegressor (2024). Scikit-learn stack-
ingregressor. https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.StackingRegressor.html.
Seidel, E. L., Sibghat, H., Chaudhuri, K., Weimer, W., and
Jhala, R. (2017). Learning to blame: localizing novice
type errors with data-driven diagnosis. Proc. ACM
Program. Lang., 1(OOPSLA).
Sobreira, V., Durieux, T., Delfim, F. M., Martin, M.,
and de Almeida Maia, M. (2018). Dissection of
a bug dataset: Anatomy of 395 patches from de-
fects4j. 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering
(SANER), pages 130–140.
Tan, S. H., Yoshida, H., Prasad, M. R., and Roychoudhury,
A. (2016). Anti-patterns in search-based program re-
pair. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software
Feature Extraction, Learning and Selection in Support of Patch Correctness Assessment
33