
prediction at public charging stations using super-
vised machine learning regression methods. Energies,
13(6).
Balakrishnan, P. C. and Pillai, A. S. (2023). Design
and development of smart interoperable electric ve-
hicle supply equipment for electric mobility. Interna-
tional Journal of Electrical and Computer Engineer-
ing, 13(3):3509–3518.
El-Fedany, I., Kiouach, D., and Alaoui, R. (2023). A smart
system combining real and predicted data to recom-
mend an optimal electric vehicle charging station. In-
donesian Journal of Electrical Engineering and Com-
puter Science, 30(1):394–405.
El Halim, A., E. Bayoumi, W. El-Khattam, and A. M.
Ibrahim (2022). Electric vehicles: a review of their
components and technologies. International Journal
of Power Electronics and Drive Systems, 13(4):2041–
2061.
Engel, H., Hensley, R., Knupfer, S., and Sahdev, S. (2018).
Charging ahead: Electric-vehicle infrastructure de-
mand. (Exhibit 1):1–8.
George, V., Dixit, P., Dawnee, S., Agarwal, K.,
Venkataramu, V., and Giridhar, D. B. (2022). Com-
munication framework in an electric vehicle charging
station supporting solar energy management. Indone-
sian Journal of Electrical Engineering and Computer
Science, 28(1):49–57.
Giansoldati, M., Monte, A., and Scorrano, M. (2020). Bar-
riers to the adoption of electric cars: Evidence from
an Italian survey. Energy Policy, 146(July):1–10.
Gruosso, G., Mion, A., and Storti Gajani, G. (2020). Fore-
casting of electrical vehicle impact on infrastructure:
Markov chains model of charging stations occupation.
eTransportation, 6.
Hecht, C., Aghsaee, R., Schwinger, F., Figgener, J., Jarke,
M., and Sauer, D. U. (2022). Short-term prediction
of electric vehicle charging station availability using
cascaded machine learning models. 6th E-Mobility
Power System Integration Symposium and published
in the Symposium’s proceedings, (October).
Hecht, C., Figgener, J., and Sauer, D. U. (2021). Predicting
Electric Vehicle Charging Station Availability Using
Ensemble Machine Learning. Energies, (August):1–
24.
Hennlock, M. and WP4 Shift (2020). Strong link between
charging infrastructure and adoption of electric vehi-
cles. pages 1–4.
Intekin, F. (2022). Real-time availability prediction of elec-
tric vehicle charging spots. Master’s thesis, Tallinn
University of Technology. https://digikogu.taltech.ee/
en/Item/1fe83458-e52e-41da-a883-ee5fb1d78aad.
International Energy Agency (2023). Global EV Outlook
2023. Technical Report Geo.
Karike, S., Donepudi, S. R., and Raju, K. N. (2023). AC-DC
UPF charging circuit for two-wheeler electric vehicle
application. International Journal of Power Electron-
ics and Drive Systems, 14(1):11–24.
Kim, Y. and Kim, S. (2021). Forecasting charging demand
of electric vehicles using time-series models. Ener-
gies, 14(5).
Koohfar, S., Woldemariam, W., and Kumar, A. (2023). Per-
formance Comparison of Deep Learning Approaches
in Predicting EV Charging Demand. Sustainability
(Switzerland), 15(5).
Lee, Z. J., Li, T., and Low, S. H. (2019). ACN-Data: Anal-
ysis and applications of an open EV charging dataset.
In e-Energy 2019 - Proceedings of the 10th ACM Intl.
Conf. on Future Energy Systems, pages 139–149. As-
sociation for Computing Machinery, Inc.
Ma, T. Y. and Faye, S. (2022). Multistep electric vehi-
cle charging station occupancy prediction using hy-
brid LSTM neural networks. Energy, 244.
Qiao, F. and Lin, S. (2021). Data-driven prediction of fine-
grained EV charging behaviors in public charging sta-
tions: Poster. e-Energy 2021 - Proceedings of the
2021 12th ACM Intl. Conf. on Future Energy Systems,
3466567(5):276–277.
Sao, A., Tempelmeier, N., and Demidova, E. (2021). Deep
Information Fusion for Electric Vehicle Charging Sta-
tion Occupancy Forecasting. IEEE Conference on In-
telligent Transportation Systems, Proceedings, ITSC,
2021-Septe:3328–3333.
Schulz, F. and Rode, J. (2022). Public charging infrastruc-
ture and electric vehicles in Norway. Energy Policy,
160.
Shahriar, S., A.R.Al-Ali, A.H.Osman, S.Dhou, and
M.Nijim (2021). Prediction of EV charging behav-
ior using machine learning. IEEE Access, 9:111576–
111586.
Soldan, F. e. a. (2021). Short-term forecast of electric vehi-
cle charging stations occupancy using big data stream-
ing analysis. 21st IEEE International Conference on
Environment and Electrical Engineering and 2021 5th
IEEE Industrial and Commercial Power System Eu-
rope, EEEIC / I and CPS Europe 2021 - Proceedings.
Tambunan, H. B., Sitanggang, R. B., Mafruddin, M. M.,
Prasetyawan, O., Kensianesi, Istiqomah, Cahyo, N.,
and Tanbar, F. (2023). Initial location selection of
electric vehicles charging infrastructure in urban city
through clustering algorithm. International Journal
of Electrical and Computer Engineering, 13(3):3266–
3280.
Yi, Z., Liu, X. C., Wei, R., Chen, X., and Dai, J. (2022).
Electric vehicle charging demand forecasting using
deep learning model. Journal of Intelligent Trans-
portation Systems: Technology, Planning, and Opera-
tions, 26(6):690–703.
Zhao, Y., Wang, Z., Shen, Z. J. M., and Sun, F. (2021).
Data-driven framework for large-scale prediction of
charging energy in electric vehicles. Applied Energy,
282(PB):116175.
Zhu, J., Yang, Z., Guo, Y., Zhang, J., and Yang, H. (2019a).
Short-term load forecasting for electric vehicle charg-
ing stations based on deep learning approaches. Ap-
plied Sciences (Switzerland), 9(9).
Zhu, J., Yang, Z., Mourshed, M., Guo, Y., Zhou, Y., Chang,
Y., Wei, Y., and Feng, S. (2019b). Electric vehicle
charging load forecasting: A comparative study of
deep learning approaches. Energies, 12(14):1–19.
ICSOFT 2024 - 19th International Conference on Software Technologies
358