in bloom: Deciphering how we teach it. In The Prac-
tice of Enterprise Modeling.
Bork, D. (2019). A framework for teaching conceptual
modeling and metamodeling based on bloom’s revised
taxonomy of educational objectives. In Hawaii Inter-
national Conference on System Sciences.
Delcambre, L. M. L., Liddle, S. W., Pastor, O., and Storey,
V. C. (2018). A reference framework for concep-
tual modeling. In Conceptual Modeling, pages 27–42,
Cham. Springer International Publishing.
Dunn, P. K. and Marshman, M. F. (2019). Teaching math-
ematical modelling: a framework to support teachers’
choice of resources. Teaching Mathematics and its
Applications: An International Journal of the IMA,
39(2):127–144.
Falcão, F., Pereira, D. M., Gonçalves, N., De Champlain,
A., Costa, P., and Pêgo, J. M. (2023). A suggestive ap-
proach for assessing item quality, usability and valid-
ity of automatic item generation. Advances in Health
Sciences Education, 28(5):1441–1465.
Ghosh, S. and Bashar, R. (2018). Automated generation
of e-r diagram from a given text in natural language.
2018 International Conference on Machine Learning
and Data Engineering (iCMLDE), pages 91–96.
GI, G. f. I. e. (2017). Rahmenempfehlung für die ausbildung
in wirtschaftsinformatik an hochschulen.
Gierl, M., Lai, H., and Turner, S. (2012). Using automatic
item generation to create multiple-choice test items.
Medical education, 46:757–65.
Gierl, M. J. and Lai, H. (2016). A process for reviewing and
evaluating generated test items. Educational Measure-
ment: Issues and Practice, 35(4):6–20.
Gierl, M. J., Lai, H., and Tanygin, V. (2021). Advanced
Methods in Automatic Item Generation.
Gierl, M. J., Zhou, J., and Alves, C. (2008). Developing a
taxonomy of item model types to promote assessment
engineering. The Journal of Technology, Learning and
Assessment, 7(2).
Guarino, N., Guizzardi, G., and Mylopoulos, J. (2019).
On the philosophical foundations of conceptual mod-
els. In European-Japanese Conference on Information
Modelling and Knowledge Bases.
Haataja, E. S., Tolvanen, A., Vilppu, H., Kallio, M., Pel-
tonen, J., and Metsäpelto, R.-L. (2023). Measur-
ing higher-order cognitive skills with multiple choice
questions –potentials and pitfalls of finnish teacher ed-
ucation entrance. Teaching and Teacher Education,
122:103943.
Haladyna, Mark R. Raymond, T. M. S. L., editor (2015).
Handbook of Test Development. Routledge, New
York, 2 edition.
He, X., Ma, Z., Shao, W., and Li, G. (2007). Metamodel
for the notation of graphical modeling languages. vol-
ume 19, pages 219–224.
Keller, G., Scheer, A.-W., and Nüttgens, M. (1992). Se-
mantische Prozeßmodellierung auf der Grundlage"
Ereignisgesteuerter Prozeßketten (EPK)". Inst. für
Wirtschaftsinformatik.
Kucharski, S., Damnik, G., Stahr, F., and Braun, I. (2023).
Revision of the aig software toolkit: A contribute
to more user friendliness and algorithmic efficiency.
pages 410–417.
Kurdi, G., Leo, J., Parsia, B., Sattler, U., and Al-Emari,
S. (2020). A systematic review of automatic ques-
tion generation for educational purposes. Interna-
tional Journal of Artificial Intelligence in Education,
30(1):121–204.
Laduca, A., Staples, W. I., Templeton, B., and Holz-
man, G. B. (1986). Item modelling procedure for
constructing content-equivalent multiple choice ques-
tions. Medical Education, 20(1):53–56.
Meike, U. and Constantin, H. (2023). Automated as-
sessment of conceptual models in education. Enter-
prise Modelling and Information Systems Architec-
tures (EMISAJ) - International Journal of Conceptual
Modeling, 15, Nr. 2:1–15.
Neuwirth, M., Finkensiep, C., and Rohrmeier, M. (2023).
Musical Schemata: Modelling Challenges and Pattern
Finding (BachBeatles). In Mixing Methods. Practical
Insights from the Humanities in the Digital Age, pages
147–164. De Gruyter.
Robinson, S. (2008). Conceptual modelling for simulation
part i: Definition and requirements. Journal of the
Operational Research Society, 59:278–290.
Rudolph, M. J., Daugherty, K. K., Ray, M. E., Shuford,
V. P., Lebovitz, L., and DiVall, M. V. (2019). Best
Practices Related to Examination Item Construction
and Post-hoc Review. American Journal of Pharma-
ceutical Education, 83(7):7204.
Schüler, S. and Alpers, S. (2024). State of the Art: Auto-
matic Generation of Business Process Models, pages
161–173.
Soyka, C., Schaper, N., Bender, E., Striewe, M., and Ull-
rich, M. (2022). Toward a competence model for
graphical modeling. ACM Trans. Comput. Educ.,
23(1).
Stark, S., Chernyshenko, O. S., and Drasgow, F. (2006).
Detecting differential item functioning with confirma-
tory factor analysis and item response theory: Toward
a unified strategy. Journal of Applied Psychology,
91(6):1292–1306. Place: US Publisher: American
Psychological Association.
Striewe, M., Forell, M., Houy, C., Pfeiffer, P., Schiefer,
G., Schüler, S., Soyka, C., Stottrop, T., Ullrich, M.,
Fettke, P., Loos, P., Oberweis, A., and Schaper, N.
(2021). Kompetenzorientiertes e-assessment für die
grafische, konzeptuelle modellierung. HMD Praxis
der Wirtschaftsinformatik, 58(6):1350–1363.
Szcz˛e
´
sniak, B. (2011). Syntax errors in flat EPC diagrams
made by persons learning the methodology. Zeszyty
Naukowe / Akademia Morska w Szczecinie, nr 27 (99)
z. 2:75–79.
Taly, A., Nitti, F., Baaden, M., and Pasquali, S. (2019).
Molecular modelling as the spark for active learning
approaches for interdisciplinary biology teaching. In-
terface Focus, 9(3):20180065.
Yirik, M. A., Sorokina, M., and Steinbeck, C. (2021). MAY-
GEN: an open-source chemical structure generator for
constitutional isomers based on the orderly generation
principle. Journal of Cheminformatics, 13(1):48.
AIG 2024 - Special Session on Automatic Item Generation
818