Bogdanov, D., Laur, S., and Willemson, J. (2008). Share-
mind: A framework for fast privacy-preserving com-
putations. In Computer Security-ESORICS 2008:
13th European Symposium on Research in Computer
Security, M
´
alaga, Spain, October 6-8, 2008. Proceed-
ings 13, pages 192–206. Springer.
Ciucanu, R. and Lafourcade, P. (2020). GOOSE: A se-
cure framework for graph outsourcing and sparql eval-
uation. In 34th Annual IFIP WG 11.3 Conference
on Data and Applications Security and Privacy (DB-
Sec’20). Accept
´
e,
`
a para
ˆ
ıtre.
Cramer, R., Damg
˚
ard, I. B., and Nielsen, J. B. (2015). Se-
cure multiparty computation. Cambridge University
Press.
Evans, D., Kolesnikov, V., and Rosulek, M. (2018). A prag-
matic introduction to secure multi-party computation.
Found. Trends Priv. Secur., 2:70–246.
Francis, N., Green, A., Guagliardo, P., Libkin, L., Lin-
daaker, T., Marsault, V., Plantikow, S., Rydberg, M.,
Selmer, P., and Taylor, A. (2018). Cypher: An evolv-
ing query language for property graphs. In Proceed-
ings of the 2018 International Conference on Manage-
ment of Data, pages 1433–1445.
Gu, Z., Corcoglioniti, F., Lanti, D., Mosca, A., Xiao, G.,
Xiong, J., and Calvanese, D. (to appear). A systematic
overview of data federation systems. Semantic Web.
Guia, J., Soares, V. G., and Bernardino, J. (2017). Graph
databases: Neo4j analysis. In ICEIS (1), pages 351–
356.
Han, F., Zhang, L., Feng, H., Liu, W., and Li, X. (2022).
Scape: Scalable collaborative analytics system on pri-
vate database with malicious security. In 2022 IEEE
38th International Conference on Data Engineering
(ICDE), pages 1740–1753. IEEE.
He, Z., Wong, W. K., Kao, B., Cheung, D., Li, R., Yiu, S.,
and Lo, E. (2015). SDB: A secure query processing
system with data interoperability. Proc. VLDB En-
dow., 8:1876–1879.
Hunger, M. (2020). neo4j-graph-examples/pole. https://gi
thub.com/neo4j-graph-examples/pole/. Accessed:
2023-12-28.
Liagouris, J., Kalavri, V., Faisal, M., and Varia, M. (2021).
Secrecy: Secure collaborative analytics on secret-
shared data. arXiv preprint arXiv:2102.01048.
Liu, C., Wang, X. S., Nayak, K., Huang, Y., and Shi, E.
(2015). ObliVM: A programming framework for se-
cure computation. In 2015 IEEE Symposium on Secu-
rity and Privacy, pages 359–376.
Maurer, U. and Wolf, S. (1998). Diffie-hellman, deci-
sion diffie-hellman, and discrete logarithms. In Pro-
ceedings. 1998 IEEE International Symposium on In-
formation Theory (Cat. No. 98CH36252), page 327.
IEEE.
Miller, J. J. (2013). Graph database applications and con-
cepts with Neo4j. In Proceedings of the Southern
Association for Information Systems Conference, At-
lanta, GA, USA, volume 2324.
Nayak, K., Wang, X. S., Ioannidis, S., Weinsberg, U., Taft,
N., and Shi, E. (2015). Graphsc: Parallel secure com-
putation made easy. In 2015 IEEE Symposium on Se-
curity and Privacy, pages 377–394. IEEE.
Needham, M. and Hodler, A. E. (2019). Graph algo-
rithms: practical examples in Apache Spark and
Neo4j. O’Reilly Media.
Neo4j (2007). built-in examples: Movie-graph. https://neo4
j.com/developer/example-data/#built-in-examples/.
Accessed: 2023-12-28.
Poddar, R., Kalra, S., Yanai, A., Deng, R., Popa, R. A.,
and Hellerstein, J. M. (2020). Senate: A maliciously-
secure mpc platform for collaborative analytics. arXiv
e-prints, pages arXiv–2010.
Rogers, J., Adetoro, E., Bater, J., Canter, T., Fu, D., Hamil-
ton, A., Hassan, A., Martinez, A., Michalski, E.,
Mitrovic, V., et al. (2022). Vaultdb: A real-world pi-
lot of secure multi-party computation within a clinical
research network. arXiv preprint arXiv:2203.00146.
Salehnia, A. (2017). Comparisons of relational databases
with big data: a teaching approach. South Dakota
State University Brookings, SD 57007, pages 1–8.
Sangers, A., van Heesch, M., Attema, T., Veugen, T., Wig-
german, M., Veldsink, J., Bloemen, O., and Worm, D.
(2019). Secure multiparty pagerank algorithm for col-
laborative fraud detection. In Financial Cryptography
and Data Security: 23rd International Conference,
FC 2019, Frigate Bay, St. Kitts and Nevis, February
18–22, 2019, Revised Selected Papers 23, pages 605–
623. Springer.
Shamir, A. (1979). How to share a secret. Communications
of the ACM, 22(11):612–613.
Smajlovi
´
c, H., Shajii, A., Berger, B., Cho, H., and Nu-
managi
´
c, I. (2023). Sequre: a high-performance
framework for secure multiparty computation enables
biomedical data sharing. Genome Biology, 24(1):1–
18.
Tang, G., Pang, B., Chen, L., and Zhang, Z. (2023). Ef-
ficient lattice-based threshold signatures with func-
tional interchangeability. IEEE Transactions on In-
formation Forensics and Security, 18:4173–4187.
Tong, Y., Pan, X., Zeng, Y., Shi, Y., Xue, C., Zhou, Z.,
Zhang, X., Chen, L., Xu, Y., Xu, K., et al. (2022).
Hu-fu: Efficient and secure spatial queries over data
federation. Proceedings of the VLDB Endowment,
15(6):1159.
Tong, Y., Zeng, Y., Zhou, Z., Liu, B., Shi, Y., Li, S., Xu,
K., and Lv, W. (2023). Federated computing: Query,
learning, and beyond. IEEE Data Eng. Bull., 46(1):9–
26.
van Egmond, M. B., Spini, G., van der Galien, O., IJpma,
A., Veugen, T., Kraaij, W., Sangers, A., Rooijakkers,
T., Langenkamp, P., Kamphorst, B., et al. (2021).
Privacy-preserving dataset combination and lasso re-
gression for healthcare predictions. BMC medical in-
formatics and decision making, 21(1):1–16.
Volgushev, N., Schwarzkopf, M., Getchell, B., Varia, M.,
Lapets, A., and Bestavros, A. (2019). Conclave: se-
cure multi-party computation on big data. In Pro-
ceedings of the Fourteenth EuroSys Conference 2019,
pages 1–18.
Efficient and Secure Multiparty Querying over Federated Graph Databases
49