
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sas-
try, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A.,
Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen,
M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark,
J., Berner, C., McCandlish, S., Radford, A., Sutskever,
I., and Amodei, D. (2020). Language Models Are
Few-Shot Learners. In Proceedings of the 34th Inter-
national Conference on Neural Information Process-
ing Systems, NIPS’20, Red Hook, NY, USA. Curran
Associates Inc.
Bui, Q.-C., Scandariato, R., and Ferreyra, N. E. D. (2022).
Vul4J: A Dataset of Reproducible Java Vulnerabil-
ities Geared Towards the Study of Program Repair
Techniques. In 2022 IEEE/ACM 19th International
Conference on Mining Software Repositories (MSR),
pages 464–468.
Chen, Z., Kommrusch, S. J., Tufano, M., Pouchet,
L. N., Poshyvanyk, D., and Monperrus, M. (2019).
SEQUENCER: Sequence-to-Sequence Learning for
End-to-End Program Repair. IEEE Transactions on
Software Engineering, (01):1–1.
Csuvik, V. and Vid
´
acs, L. (2022). FixJS: A Dataset of
Bug-Fixing JavaScript Commits. In Proceedings of
the 19th International Conference on Mining Software
Repositories, MSR ’22, page 712–716, New York,
NY, USA. Association for Computing Machinery.
difflib (2023). difflib.
https://docs.python.org/3.11/library/difflib.html.
Dinella, E., Dai, H., Brain, G., Li, Z., Naik, M., Song,
L., Tech, G., and Wang, K. (2020). Hoppity: Learn-
ing Graph Transformations To Detect and Fix Bugs in
Programs. Technical report.
Dong, J., Lou, Y., Zhu, Q., Sun, Z., Li, Z., Zhang, W.,
and Hao, D. (2022). FIRA: ¡u¿fi¡/U¿ne-Grained
G¡u¿ra¡/U¿ph-Based Code Change Representation for
Automated Commit Message Generation. ICSE ’22,
page 970–981, New York, NY, USA. Association for
Computing Machinery.
Drain, D., Wu, C., Svyatkovskiy, A., and Sundaresan, N.
(2021). Generating bug-fixes using pretrained trans-
formers. MAPS 2021 - Proceedings of the 5th ACM
SIGPLAN International Symposium on Machine Pro-
gramming, co-located with PLDI 2021, pages 1–8.
GitHub (2023a). GitHub. https://github.com/.
GitHub (2023b). Octoverse: The state of open source and
rise of AI in 2023. https://octoverse.github.com.
GitHub REST API (2023a). GitHub REST API Official
Website. https://docs.github.com/en/rest.
GitHub REST API (2023b). Rate limits of GitHub’s
REST API. https://docs.github.com/en/rest/overview/
rate-limits-for-the-rest-api?apiVersion=2022-11-28.
GitPython (2023). GitPython.
https://github.com/gitpython-developers/GitPython.
Gyimesi, P., Vancsics, B., Stocco, A., Mazinanian, D.,
Besz
´
edes, A., Ferent, R., and Mesbah, A. (2019).
BugsJS: a Benchmark of JavaScript Bugs. In 2019
12th IEEE Conference on Software Testing, Validation
and Verification (ICST), pages 90–101.
He, Y., Chen, Z., and Le Goues, C. (2023). PreciseBug-
Collector: Extensible, Executable and Precise Bug-
Fix Collection: Solution for Challenge 8: Automating
Precise Data Collection for Code Snippets with Bugs,
Fixes, Locations, and Types. In 2023 38th IEEE/ACM
International Conference on Automated Software En-
gineering (ASE), pages 1899–1910.
Hu, Y., Shi, X., Zhou, Q., and Pike, L. (2022). Fix
Bugs with Transformer through a Neural-Symbolic
Edit Grammar. In Deep Learning for Code Workshop.
Jiang, N., Lutellier, T., and Tan, L. (2021). CURE:
Code-Aware Neural Machine Translation for Auto-
matic Program Repair. pages 1161–1173.
Just, R., Jalali, D., and Ernst, M. D. (2014). Defects4J: A
database of existing faults to enable controlled test-
ing studies for Java programs. In 2014 International
Symposium on Software Testing and Analysis, ISSTA
2014 - Proceedings, pages 437–440. Association for
Computing Machinery, Inc.
Karampatsis, R.-M. and Sutton, C. (2020). How Often Do
Single-Statement Bugs Occur? The ManySStuBs4J
Dataset. In Proceedings of the 17th International Con-
ference on Mining Software Repositories, MSR ’20,
page 573–577, New York, NY, USA. Association for
Computing Machinery.
Kim, M., Kim, Y., Jeong, H., Heo, J., Kim, S., Chung,
H., and Lee, E. (2022). An Empirical Study of Deep
Transfer Learning-Based Program Repair for Kotlin
Projects. In Proceedings of the 30th ACM Joint Eu-
ropean Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, ES-
EC/FSE 2022, page 1441–1452, New York, NY, USA.
Association for Computing Machinery.
Le Goues, C., Holtschulte, N., Smith, E. K., Brun, Y., De-
vanbu, P., Forrest, S., and Weimer, W. (2015). The
ManyBugs and IntroClass Benchmarks for Automated
Repair of C Programs. IEEE Transactions on Software
Engineering, 41(12):1236–1256.
Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A.,
Blanco, A., Clement, C., Drain, D., Jiang, D., Tang,
D., Li, G., Zhou, L., Shou, L., Zhou, L., Tufano, M.,
Gong, M., Zhou, M., Duan, N., Sundaresan, N., Deng,
S. K., Fu, S., and Liu, S. (2021). CodeXGLUE: A
Machine Learning Benchmark Dataset for Code Un-
derstanding and Generation. undefined.
Lutellier, T., Pang, L., Pham, V. H., Wei, M., and Tan, L.
(2019). ENCORE: Ensemble Learning using Convo-
lution Neural Machine Translation for Automatic Pro-
gram Repair.
Lutellier, T., Pham, H. V., Pang, L., Li, Y., Wei, M., and
Tan, L. (2020). CoCoNuT: Combining context-aware
neural translation models using ensemble for program
repair. ISSTA 2020 - Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Test-
ing and Analysis, 20:101–114.
Martinez, M. and Monperrus, M. (2016). ASTOR: A pro-
gram repair library for Java (Demo). ISSTA 2016 -
Proceedings of the 25th International Symposium on
Software Testing and Analysis, pages 441–444.
Monperrus, M. (2020). The Living Review on Automated
Program Repair. Technical report.
DATA 2024 - 13th International Conference on Data Science, Technology and Applications
344