
T¸iplea, F. L. (2022). Narrow privacy and desynchronization
in Vaudenay’s RFID model. International Journal of
Information Security, 22:563–575.
T¸iplea, F. L., Andriesei, C., and Hristea, C. (2021). Security
and privacy of PUF-based RFID systems. In Cryptog-
raphy - Recent Advances and Future Developments.
IntechOpen. ISBN 978-1-83962-566-4.
T¸iplea, F. L., Hristea, C., and Bulai, R. (2022). Privacy
and reader-first authentication in Vaudenay’s RFID
model with temporary state disclosure. Comput. Sci.
J. Moldova, 30(3):335–359.
Delvaux, J. (2017). Security analysis of PUF-based key
generation and entity authentication.
Fan, K., Jiang, W., Li, H., and Yang, Y. (2018). Lightweight
RFID protocol for medical privacy protection in
IoT. IEEE Transactions on Industrial Informatics,
14(4):1656–1665.
Fan, K., Luo, Q., Zhang, K., and Yang, Y. (2020). Cloud-
based lightweight secure rfid mutual authentication
protocol in iot. Information Sciences, 527:329–340.
Fan, K., Zhu, S., Zhang, K., Li, H., and Yang, Y. (2019).
A lightweight authentication scheme for cloud-based
RFID healthcare systems. IEEE Network, 33(2):44–
49.
Gao, Y., van Dijk, M., Xu, L., Yang, W., Nepal, S.,
and Ranasinghe, D. C. (2022). TREVERSE: TRial-
and-Error lightweight secure ReVERSE authentica-
tion with simulatable PUFs. IEEE Transactions on
Dependable and Secure Computing, 19(1):419–437.
Gope, P. and Sikdar, B. (2021). A comparative study of de-
sign paradigms for PUF-based security protocols for
iot devices: Current progress, challenges, and future
expectation. Computer, 54(11):36–46.
Hermans, J., Pashalidis, Andreasand Vercauteren, F., and
Preneel, B. (2011). A new RFID privacy model. In
Atluri, V. and Diaz, C., editors, Computer Security –
ESORICS 2011, pages 568–587, Berlin, Heidelberg.
Springer Verlag.
Hermans, J., Peeters, R., and Preneel, B. (2014). Proper
RFID privacy: Model and protocols. IEEE Transac-
tions on Mobile Computing, 13(12):2888–2902.
Hristea, C. and T¸ iplea, F. L. (2020). Privacy of stateful
RFID systems with constant tag identifiers. IEEE
Transactions on Information Forensics and Security,
15:1920–1934.
Jin, C., Xu, C., Zhang, X., and Zhao, J. (2015). A se-
cure RFID mutual authentication protocol for health-
care environments using elliptic curve cryptography.
J. Medical Syst., 39(3):24.
Katz, J. and Lindell, Y. (2020). Introduction to Modern
Cryptography. Chapman & Hall/CRC, 3rd edition.
Kumar, A., Singh, K., Shariq, M., Lal, C., Conti, M., Amin,
R., and Chaudhry, S. A. (2023). An efficient and
reliable ultralightweight RFID authentication scheme
for healthcare systems. Computer Communications,
205:147–157.
Paise, R.-I. and Vaudenay, S. (2008). Mutual authentication
in RFID: Security and privacy. In Proceedings of the
2008 ACM Symposium on Information, Computer and
Communications Security, ASIACCS ’08, pages 292–
299, New York, NY, USA. ACM.
R
¨
uhrmair, U. and van Dijk, M. (2013). PUFs in security
protocols: Attack models and security evaluations. In
2013 IEEE Symposium on Security and Privacy, pages
286–300.
Sadeghi, A.-R., Visconti, I., and Wachsmann, C. (2010a).
Enhancing rfid security and privacy by physically
unclonable functions. In Sadeghi, A.-R. and Nac-
cache, D., editors, Towards Hardware-Intrinsic Se-
curity: Foundations and Practice, pages 281–305,
Berlin, Heidelberg. Springer Berlin Heidelberg.
Sadeghi, A.-R., Visconti, I., and Wachsmann, C. (2010b).
PUF-enhanced RFID security and privacy. In Work-
shop on secure component and system identification
(SECSI), volume 110.
Safkhani, M., Rostampour, S., Bendavid, Y., and Bagheri,
N. (2020). IoT in medical and pharmaceutical: De-
signing lightweight RFID security protocols for en-
suring supply chain integrity. Computer Networks,
181:107558.
Sipser, M. (2012). Introduction to the Theory of Computa-
tion. Cengage Learning.
Vaudenay, S. (2007). On privacy models for RFID. In Pro-
ceedings of the Advances in Crypotology 13th Interna-
tional Conference on Theory and Application of Cryp-
tology and Information Security, ASIACRYPT’07,
pages 68–87, Berlin, Heidelberg. Springer-Verlag.
Wang, Y., Liu, R., Gao, T., Shu, F., Lei, X., Gui, G., and
Wang, J. (2023). A novel RFID authentication pro-
tocol based on a block-order-modulus variable matrix
encryption algorithm.
Xiao, H., Alshehri, A. A., and Christianson, B. (2016). A
cloud-based RFID authentication protocol with inse-
cure communication channels. In 2016 IEEE Trust-
com/BigDataSE/ISPA, pages 332–339.
Xiao, L., Xu, H., Zhu, F., Wang, R., and Li, P. (2020).
SKINNY-based RFID lightweight authentication pro-
tocol. Sensors, 20(5).
Xu, H., Ding, J., Li, P., Zhu, F., and Wang, R. (2018).
A lightweight RFID mutual authentication protocol
based on physical unclonable function. Sensors,
18(3).
Zhu, F., Li, P., Xu, H., and Wang, R. (2020). A novel
lightweight authentication scheme for RFID-based
healthcare systems. Sensors, 20(17).
T¸iplea, F. L. (2022). Lessons to be learned for a good design
of private RFID schemes. IEEE Transactions on De-
pendable and Secure Computing, 19(4):2384–2395.
T¸iplea, F. L. and Hristea, C. (2021). PUF protected vari-
ables: A solution to RFID security and privacy un-
der corruption with temporary state disclosure. IEEE
Transactions on Information Forensics and Security,
16:999–1013.
On Privacy of RFID-Based Authentication Protocols
139