LeCun, Y. and Cortes, C. (2010). MNIST handwritten digit
database.
Li, B., Fan, L., Gu, H., Li, J., and Yang, Q. (2022). Fedipr:
Ownership verification for federated deep neural net-
work models. IEEE Transactions on Pattern Analysis
and Machine Intelligence.
Li, F.-Q., Wang, S.-L., and Liew, A. W.-C. (2021a). To-
wards practical watermark for deep neural networks in
federated learning. arXiv preprint arXiv:2105.03167.
Li, Y., Wang, H., and Barni, M. (2021b). A survey of deep
neural network watermarking techniques. Neurocom-
puting, 461:171–193.
Li, Y. and Yuan, Y. (2017). Convergence analysis of two-
layer neural networks with relu activation. Advances
in neural information processing systems, 30.
Liang, J. and Wang, R. (2023). Fedcip: Federated client
intellectual property protection with traitor tracking.
arXiv preprint arXiv:2306.01356.
Liu, X., Shao, S., Yang, Y., Wu, K., Yang, W., and Fang,
H. (2021). Secure federated learning model verifica-
tion: A client-side backdoor triggered watermarking
scheme. In 2021 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pages 2414–
2419. IEEE.
Loshchilov, I. and Hutter, F. (2017). Decoupled weight de-
cay regularization. arXiv preprint arXiv:1711.05101.
Lukas, N., Jiang, E., Li, X., and Kerschbaum, F. (2022).
Sok: How robust is image classification deep neural
network watermarking? In 2022 IEEE Symposium on
Security and Privacy (SP), pages 787–804. IEEE.
Lv, P., Li, P., Zhang, S., Chen, K., Liang, R., Ma, H., Zhao,
Y., and Li, Y. (2023). A robustness-assured white-box
watermark in neural networks. IEEE Transactions on
Dependable and Secure Computing.
McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. (2017). Communication-efficient learn-
ing of deep networks from decentralized data. In Ar-
tificial intelligence and statistics, pages 1273–1282.
PMLR.
Miao, Y., Liu, Z., Li, H., Choo, K.-K. R., and Deng, R. H.
(2022). Privacy-preserving byzantine-robust feder-
ated learning via blockchain systems. IEEE Transac-
tions on Information Forensics and Security, 17:2848–
2861.
Nie, H. and Lu, S. (2024). Fedcrmw: Federated model own-
ership verification with compression-resistant model
watermarking. Expert Systems with Applications,
249:123776.
NVIDIA (2023). NVFLARE: NVIDIA Federated Learning
Application Runtime Environment. Accessed: 2023-
04-21.
Paillier, P. (1999). Public-key cryptosystems based on com-
posite degree residuosity classes. In International
conference on the theory and applications of crypto-
graphic techniques, pages 223–238. Springer.
Pierre, F., Guillaume, C., Teddy, F., and Matthijs, D. (2023).
Functional invariants to watermark large transformers.
arXiv preprint arXiv:2310.11446.
Shao, S., Yang, W., Gu, H., Qin, Z., Fan, L., and Yang, Q.
(2024). Fedtracker: Furnishing ownership verification
and traceability for federated learning model. IEEE
Transactions on Dependable and Secure Computing.
Shokri, R., Stronati, M., Song, C., and Shmatikov, V.
(2017). Membership inference attacks against ma-
chine learning models. In 2017 IEEE symposium on
security and privacy (SP), pages 3–18. IEEE.
Sun, Y., Liu, T., Hu, P., Liao, Q., Ji, S., Yu, N., Guo, D., and
Liu, L. (2023). Deep intellectual property: A survey.
arXiv preprint arXiv:2304.14613.
Tekgul, B. A., Xia, Y., Marchal, S., and Asokan, N. (2021).
Waffle: Watermarking in federated learning. In 2021
40th International Symposium on Reliable Distributed
Systems (SRDS), pages 310–320, Los Alamitos, CA,
USA. IEEE Computer Society.
Uchida, Y., Nagai, Y., Sakazawa, S., and Satoh, S. (2017).
Embedding watermarks into deep neural networks. In
Proceedings of the 2017 ACM on international con-
ference on multimedia retrieval, pages 269–277.
Wang, B., Chen, Y., Li, F., Song, J., Lu, R., Duan, P.,
and Tian, Z. (2024). Privacy-preserving convolutional
neural network classification scheme with multiple
keys. IEEE Transactions on Services Computing.
Wang, T. and Kerschbaum, F. (2019). Attacks on digi-
tal watermarks for deep neural networks. In ICASSP
2019-2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
2622–2626. IEEE.
Xiong, R., Ren, W., Zhao, S., He, J., Ren, Y., Choo, K.-
K. R., and Min, G. (2024). Copifl: A collusion-
resistant and privacy-preserving federated learning
crowdsourcing scheme using blockchain and homo-
morphic encryption. Future Generation Computer
Systems, 156:95–104.
Xue, M., Wang, J., and Liu, W. (2021). Dnn intellectual
property protection: Taxonomy, attacks and evalua-
tions. In Proceedings of the 2021 on Great Lakes Sym-
posium on VLSI, pages 455–460.
Yang, W., Shao, S., Yang, Y., Liu, X., Xia, Z., Schae-
fer, G., and Fang, H. (2022). Watermarking in se-
cure federated learning: A verification framework
based on client-side backdooring. arXiv preprint
arXiv:2211.07138.
Yang, W., Yin, Y., Zhu, G., Gu, H., Fan, L., Cao, X., and
Yang, Q. (2023). Fedzkp: Federated model owner-
ship verification with zero-knowledge proof. arXiv
preprint arXiv:2305.04507.
Yu, S., Hong, J., Zeng, Y., Wang, F., Jia, R., and Zhou, J.
(2023). Who leaked the model? tracking ip infringers
in accountable federated learning. arXiv preprint
arXiv:2312.03205.
Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., and Liu, Y.
(2020). {BatchCrypt}: Efficient homomorphic en-
cryption for {Cross-Silo} federated learning. In 2020
USENIX annual technical conference (USENIX ATC
20), pages 493–506.
A White-Box Watermarking Modulation for Encrypted DNN in Homomorphic Federated Learning
197