Doriguzzi-Corin, R., Millar, S., Scott-Hayward, S.,
Martinez-del-Rincon, J., & Siracusa, D. (2020).
LUCID: A practical, lightweight deep learning solution
for DDoS attack detection. IEEE Transactions on
Network and Service Management, 17(2), 876–889.
Fenil, E., & Mohan Kumar, P. (2020). Survey on DDoS
defense mechanisms. Concurrency and Computation:
Practice and Experience, 32(4), e5114.
Firouzi, F., Farahani, B., Weinberger, M., DePace, G., &
Aliee, F. S. (2020). Iot fundamentals: Definitions,
architectures, challenges, and promises. In Intelligent
internet of things (pp. 3–50). Springer.
Gaur, V., & Kumar, R. (2022). Analysis of machine
learning classifiers for early detection of DDoS attacks
on IoT devices. Arabian Journal for Science and
Engineering, 47(2), 1353–1374.
Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J.
(2019). Survey of intrusion detection systems:
techniques, datasets and challenges. Cybersecurity,
2(1), 1–22.
Khujamatov, H., Reypnazarov, E., Khasanov, D., &
Akhmedov, N. (2021). IoT, IIoT, and cyber-physical
systems integration. In Emergence of Cyber Physical
System and IoT in Smart Automation and Robotics (pp.
31–50). Springer.
Kiran, K. S., Devisetty, R. N. K., Kalyan, N. P., Mukundini,
K., & Karthi, R. (2020). Building a intrusion detection
system for IoT environment using machine learning
techniques. Procedia Computer Science, 171, 2372–
2379.
Kumar, D., & Kumar, K. P. (2023). Artificial Intelligence
based Cyber Security Threats Identification in
Financial Institutions Using Machine Learning
Approach. 2023 2nd International Conference for
Innovation in Technology (INOCON), 1–6.
Latif, S., Idrees, Z., Zou, Z., & Ahmad, J. (2020). DRaNN:
A deep random neural network model for intrusion
detection in industrial IoT. 2020 International
Conference on UK-China Emerging Technologies
(UCET), 1–4.
MR, G. R., Ahmed, C. M., & Mathur, A. (2021). Machine
learning for intrusion detection in industrial control
systems: challenges and lessons from experimental
evaluation. Cybersecurity, 4(1), 1–12.
Muraleedharan, N., & Janet, B. (2021). A deep learning
based HTTP slow DoS classification approach using
flow data. ICT Express, 7(2), 210–214.
Parveen Sultana, H., Shrivastava, N., Dominic, D. D.,
Nalini, N., & Balajee, J. M. (2019). Comparison of
machine learning algorithms to build optimized
network intrusion detection system. Journal of
Computational and Theoretical Nanoscience, 16(5–6),
2541–2549.
Roopak, M., Tian, G. Y., & Chambers, J. (2020). An
intrusion detection system against ddos attacks in iot
networks. 2020 10th Annual Computing and
Communication Workshop and Conference (CCWC),
562–567.
Salim, M. M., Rathore, S., & Park, J. H. (2020). Distributed
denial of service attacks and its defenses in IoT: a
survey. The Journal of Supercomputing, 76(7), 5320–
5363.
Saranya, T., Sridevi, S., Deisy, C., Chung, T. D., & Khan,
M. K. A. A. (2020). Performance analysis of machine
learning algorithms in intrusion detection system: a
review. Procedia Computer Science, 171, 1251–1260.
Schulter, A., Reis, J. A., Koch, F., & Westphall, C. B.
(2006). A grid-based intrusion detection system.
International Conference on Networking, International
Conference on Systems and International Conference
on Mobile Communications and Learning Technologies
(ICNICONSMCL’06), 187.
Sharafaldin, I., Lashkari, A. H., Hakak, S., & Ghorbani, A.
A. (2019). Developing realistic distributed denial of
service (DDoS) attack dataset and taxonomy. 2019
International Carnahan Conference on Security
Technology (ICCST), 1–8.
Snehi, M., & Bhandari, A. (2021). Vulnerability
retrospection of security solutions for software-defined
Cyber–Physical System against DDoS and IoT-DDoS
attacks. Computer Science Review, 40, 100371.
Susilo, B., & Sari, R. F. (2020). Intrusion detection in IoT
networks using deep learning algorithm. Information,
11(5), 279.
Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A.
(2009). A detailed analysis of the KDD CUP 99 data set.
2009 IEEE Symposium on Computational Intelligence
for Security and Defense Applications, 1–6.
Verma, A., & Ranga, V. (2020). Machine learning based
intrusion detection systems for IoT applications.
Wireless Personal Communications, 111(4), 2287–
2310.
Vinayakumar, R., Alazab, M., Soman, K. P.,
Poornachandran, P., Al-Nemrat, A., & Venkatraman, S.
(2019). Deep learning approach for intelligent intrusion
detection system. Ieee Access, 7, 41525–41550.
Vishwakarma, R., & Jain, A. K. (2020). A survey of DDoS
attacking techniques and defence mechanisms in the
IoT network. Telecommunication Systems, 73(1), 3–25.
Willing, M., Dresen, C., Gerlitz, E., Haering, M., Smith,
M., Binnewies, C., Guess, T., Haverkamp, U., &
Schinzel, S. (2021). Behavioral responses to a cyber
attack in a hospital environment. Scientific Reports,
11(1), 1–15.
Wolpert, D. H., & Macready, W. G. (1997). No free lunch
theorems for optimization. IEEE Transactions on
Evolutionary Computation.
https://doi.org/10.1109/4235.585893
Yu, J., Lee, H., Kim, M.-S., & Park, D. (2008). Traffic
flooding attack detection with SNMP MIB using SVM.
Computer Communications, 31(17), 4212–4219.
Yu, K., Tan, L., Yang, C., Choo, K.-K. R., Bashir, A. K.,
Rodrigues, J. J. P. C., & Sato, T. (2021). A blockchain-
based shamir’s threshold cryptography scheme for data
protection in industrial internet of things settings. IEEE
Internet of Things Journal.
Zarpelão, B. B., Miani, R. S., Kawakani, C. T., & de
Alvarenga, S. C. (2017). A survey of intrusion detection
in Internet of Things. Journal of Network and Computer
Applications, 84, 25–37.