
large-scale co-occurrence aggregate hierarchical data.
Future work is mainly oriented towards extend-
ing our proposed framework by means of innova-
tive characteristics of the emerging big data process-
ing paradigm, such as: (i) management of uncertain
and imprecise hierarchical data (e.g., (Burdick et al.,
2007)); (ii) anomaly detection (e.g., (Langone et al.,
2020)); (iii) inference detection (e.g., (Chow et al.,
2008)); (iv) explainability (e.g., (Aghaeipoor et al.,
2022)); (v) visualization (e.g., (Cuzzocrea and Mans-
mann, 2009; Barkwell et al., 2018)).
Figure 22: Location Co-Occurrence Analysis over the
Cancer-Incidence/Mental-Disorders Experimental Setup.
ACKNOWLEDGEMENTS
This work was funded by the Next Generation EU
- Italian NRRP, Mission 4, Component 2, Invest-
ment 1.5 (Directorial Decree n. 2021/3277) - project
Tech4You n. ECS0000009.
REFERENCES
Aghaeipoor, F., Javidi, M. M., and Fern
´
andez, A. (2022).
IFC-BD: an interpretable fuzzy classifier for boosting
explainable artificial intelligence in big data. IEEE
Trans. Fuzzy Syst., 30(3):830–840.
Agrawal, R., Srikant, R., and Thomas, D. (2005). Privacy
preserving OLAP. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data, Baltimore, Maryland, USA, June 14-16, 2005,
pages 251–262. ACM.
Barkwell, K. E., Cuzzocrea, A., Leung, C. K., Ocran, A. A.,
Sanderson, J. M., Stewart, J. A., and Wodi, B. H.
(2018). Big data visualisation and visual analytics
for music data mining. In 22nd International Con-
ference Information Visualisation, IV 2018, Fisciano,
Italy, July 10-13, 2018, pages 235–240. IEEE Com-
puter Society.
Burdick, D., Deshpande, P. M., Jayram, T. S., and Al., E.
(2007). OLAP over uncertain and imprecise data.
VLDB J., 16(1):123–144.
Chow, R., Golle, P., and Staddon, J. (2008). Detecting pri-
vacy leaks using corpus-based association rules. In
Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 893–901.
Corder, G. W. and Foreman, D. I. (2014). Nonparametric
Statistics: A Step-by-Step Approach. Wiley.
Cuzzocrea, A. (2023). A reference architecture for support-
ing multidimensional big data analytics over big web
knowledge bases: Definitions, implementation, case
studies. Int. J. Semantic Comput., 17(4):545–568.
Cuzzocrea, A., Furfaro, F., Greco, S., Masciari, E., Mazzeo,
G. M., and Sacc
`
a, D. (2005). A distributed sys-
tem for answering range queries on sensor network
data. In 3rd IEEE Conference on Pervasive Comput-
ing and Communications Workshops (PerCom 2005
Workshops), 8-12 March 2005, Kauai Island, HI,
USA, pages 369–373. IEEE Computer Society.
Cuzzocrea, A., Furfaro, F., and Sacc
`
a, D. (2003). Hand-
olap: A system for delivering OLAP services on hand-
held devices. In 6th International Symposium on Au-
tonomous Decentralized Systems (ISADS 2003), 9-11
April 2003, Pisa, Italy, pages 80–87. IEEE Computer
Society.
Cuzzocrea, A. and Mansmann, S. (2009). OLAP visualiza-
tion: models, issues, and techniques. In Encyclopedia
of Data Warehousing and Mining, Second Edition (4
Volumes), pages 1439–1446. IGI Global.
Devastator, T. (2023). Mental health disorder.
Honda, K., Oda, T., Tanaka, D., and Notsu, A. (2015).
A collaborative framework for privacy preserving
fuzzy co-clustering of vertically distributed cooccur-
rence matrices. Advances in Fuzzy Systems, 2015:art.
729072.
Langone, R., Cuzzocrea, A., and Skantzos, N. (2020). In-
terpretable anomaly prediction: Predicting anomalous
behavior in industry 4.0 settings via regularized logis-
tic regression tools. Data Knowl. Eng., 130:101850.
Organization, W. H. (2023). Cancer incidence.
Ouazzani, Z. E., Braeken, A., and Bakkali, H. E. (2021).
Proximity measurement for hierarchical categorical
attributes in big data. Secur. Commun. Networks,
2021:6612923:1–6612923:17.
Ram Mohan Rao, P., Murali Krishna, S., and Siva Kumar,
A. (2018). Privacy preservation techniques in big data
analytics: a survey. Journal of Big Data, 5(1):33.
Russom, P. (2011). Big data analytics. TDWI Best Practices
report, Fourth Quarter, 19(4):1–34.
Singh, A. K. and Kumar, J. (2023). A privacy-preserving
multidimensional data aggregation scheme with se-
cure query processing for smart grid. J. Supercomput.,
79(4):3750–3770.
Tran, H.-Y. and Hu, J. (2019). Privacy-preserving big data
analytics a comprehensive survey. Journal of Parallel
and Distributed Computing, 134:207–218.
Tsai, C.-W., Lai, C.-F., Chao, H.-C., and Vasilakos, A. V.
(2015). Big data analytics: a survey. Journal of Big
data, 2:1–32.
Wang, J., Fang, S., Liu, C., Qin, J., Li, X., and Shi, Z.
(2020). Top-k closed co-occurrence patterns mining
with differential privacy over multiple streams. Fu-
ture Gener. Comput. Syst., 111:339–351.
DATA 2024 - 13th International Conference on Data Science, Technology and Applications
102