
they are willing to share. We have conducted experi-
ments to compare the efficiency of the two protocols.
The results demonstrate that the execution times for
the server-based protocol are approximately half an
order of magnitude higher. In future work, we plan to
extend the system to secure traversal queries for cases
where our assumption of a clear-cut scenario does not
apply. Additionally, we aim to expand the system to
handle secure multi-party queries over heterogeneous
federated databases supporting different data models.
REFERENCES
Al-Juaid, N., Lisitsa, A., and Schewe, S. (2022). Smpg:
Secure multi party computation on graph databases.
In ICISSP, pages 463–471.
Albab, K. D., Issa, R., Lapets, A., Flockhart, P., Qin, L.,
and Globus-Harris, I. (2019). Tutorial: Deploying se-
cure multi-party computation on the web using JIFF.
In 2019 IEEE Cybersecurity Development (SecDev),
pages 3–3. IEEE.
Bater, J., Elliott, G., Eggen, C., Goel, S., Kho, A., and
Rogers, J. (2016). SMCQL: secure querying for fed-
erated databases. arXiv preprint arXiv:1606.06808.
Bater, J., He, X., Ehrich, W., Machanavajjhala, A., and
Rogers, J. (2018). Shrinkwrap: efficient sql query pro-
cessing in differentially private data federations. Pro-
ceedings of the VLDB Endowment, 12(3):307–320.
Bater, J., Park, Y., He, X., Wang, X., and Rogers, J.
(2020). SAQE: practical privacy-preserving approx-
imate query processing for data federations. Proceed-
ings of the VLDB Endowment, 13(12):2691–2705.
Ciucanu, R. and Lafourcade, P. (2020a). GOOSE: A se-
cure framework for graph outsourcing and sparql eval-
uation. In 34th Annual IFIP WG 11.3 Conference
on Data and Applications Security and Privacy (DB-
Sec’20). Accept
´
e,
`
a para
ˆ
ıtre.
Ciucanu, R. and Lafourcade, P. (2020b). GOOSE: A se-
cure framework for graph outsourcing and sparql eval-
uation. In 34th Annual IFIP WG 11.3 Conference
on Data and Applications Security and Privacy (DB-
Sec’20). Accept
´
e,
`
a para
ˆ
ıtre.
Evans, D., Kolesnikov, V., and Rosulek, M. (2018). A prag-
matic introduction to secure multi-party computation.
Found. Trends Priv. Secur., 2:70–246.
Francis, N., Green, A., Guagliardo, P., Libkin, L., Lin-
daaker, T., Marsault, V., Plantikow, S., Rydberg, M.,
Selmer, P., and Taylor, A. (2018). Cypher: An evolv-
ing query language for property graphs. In Proceed-
ings of the 2018 International Conference on Manage-
ment of Data, pages 1433–1445.
Gu, Z., Corcoglioniti, F., Lanti, D., Mosca, A., Xiao, G.,
Xiong, J., and Calvanese, D. (to appear). A systematic
overview of data federation systems. Semantic Web.
Guia, J., Soares, V. G., and Bernardino, J. (2017). Graph
databases: Neo4j analysis. In ICEIS (1), pages 351–
356.
Han, F., Zhang, L., Feng, H., Liu, W., and Li, X. (2022).
Scape: Scalable collaborative analytics system on pri-
vate database with malicious security. In 2022 IEEE
38th International Conference on Data Engineering
(ICDE), pages 1740–1753. IEEE.
He, Z., Wong, W. K., Kao, B., Cheung, D., Li, R., Yiu, S.,
and Lo, E. (2015). SDB: A secure query processing
system with data interoperability. Proc. VLDB En-
dow., 8:1876–1879.
Hunger, M. (2020). neo4j-graph-examples/pole. https:
//github.com/neo4j-graph-examples/pole/. Accessed:
2023-12-28.
Liagouris, J., Kalavri, V., Faisal, M., and Varia, M. (2021).
Secrecy: Secure collaborative analytics on secret-
shared data. arXiv preprint arXiv:2102.01048.
Liu, C., Wang, X. S., Nayak, K., Huang, Y., and Shi, E.
(2015). ObliVM: A programming framework for se-
cure computation. In 2015 IEEE Symposium on Secu-
rity and Privacy, pages 359–376.
Miller, J. J. (2013). Graph database applications and con-
cepts with Neo4j. In Proceedings of the Southern
Association for Information Systems Conference, At-
lanta, GA, USA, volume 2324.
Nayak, K., Wang, X. S., Ioannidis, S., Weinsberg, U., Taft,
N., and Shi, E. (2015). Graphsc: Parallel secure com-
putation made easy. In 2015 IEEE Symposium on Se-
curity and Privacy, pages 377–394. IEEE.
Poddar, R., Kalra, S., Yanai, A., Deng, R., Popa, R. A.,
and Hellerstein, J. M. (2020). Senate: A maliciously-
secure mpc platform for collaborative analytics. arXiv
e-prints, pages arXiv–2010.
Rogers, J., Adetoro, E., Bater, J., Canter, T., Fu, D., Hamil-
ton, A., Hassan, A., Martinez, A., Michalski, E.,
Mitrovic, V., et al. (2022). Vaultdb: A real-world pi-
lot of secure multi-party computation within a clinical
research network. arXiv preprint arXiv:2203.00146.
Salehnia, A. (2017). Comparisons of relational databases
with big data: a teaching approach. South Dakota
State University Brookings, SD 57007, pages 1–8.
Smajlovi
´
c, H., Shajii, A., Berger, B., Cho, H., and Nu-
managi
´
c, I. (2023). Sequre: a high-performance
framework for secure multiparty computation enables
biomedical data sharing. Genome Biology, 24(1):1–
18.
Tong, Y., Pan, X., Zeng, Y., Shi, Y., Xue, C., Zhou, Z.,
Zhang, X., Chen, L., Xu, Y., Xu, K., et al. (2022).
Hu-fu: Efficient and secure spatial queries over data
federation. Proceedings of the VLDB Endowment,
15(6):1159.
Volgushev, N., Schwarzkopf, M., Getchell, B., Varia, M.,
Lapets, A., and Bestavros, A. (2019). Conclave: se-
cure multi-party computation on big data. In Pro-
ceedings of the Fourteenth EuroSys Conference 2019,
pages 1–18.
Wang, Y. and Yi, K. (2021). Secure yannakakis: Join-
aggregate queries over private data. In Proceedings
of the 2021 International Conference on Management
of Data, SIGMOD ’21, page 1969–1981, New York,
NY, USA. Association for Computing Machinery.
Secure Multi-Party Traversal Queries over Federated Graph Databases
721