heart disease. Neural Computing and Applications.
https://doi.org/10.1007/s00521-016-2604-1.
Esfandiari, N., et al. (2014, July). Knowledge discovery in
medicine: Current issue and future trend. Expert
Systems with Applications, 41(9), 4434–4463.
https://doi.org/10.1016/j.eswa.2014.01.011.
Garg, P., Steen, J., & Mardon, A. A. (2022, February). An
exhaustive comparative analytical study of 15 machine
learning models for automated cardiovascular disease
classification. Paper presented at the 2021 4th
International Conference on Recent Trends in
Computer Science and Technology (ICRTCST)
https://doi.org/10.1109/ICRTCST54752.2022.9781828.
Guo, Y., et al. (2023, May). Machine learning-enhanced
echocardiography for screening coronary artery
disease. BioMedical Engineering OnLine, 22(1).
https://doi.org/10.1186/s12938-023-01106-x.
Hassan, C. A. U., et al. (2022, September). Effectively
predicting the presence of coronary heart disease using
machine learning classifiers. Sensors, 22(19), 7227.
https://doi.org/10.3390/s22197227.
Noh, K., Lee, H. G., Shon, H.-S., Lee, B. J., & Ryu, K. H.
(2006, October). Associative classification approach
for diagnosing cardiovascular disease. Intelligent
Computing in Signal Processing and Pattern
Recognition (pp. 721-727). Lecture Notes in Control
and Information Sciences, 345. https://doi.org/10.1007/
978-3-540-37258-5_82.
Sun, D.-W. (2008, January). Computer Vision Technology
for Food Quality Evaluation. https://doi.org/10.1016/
B978-0-12-373642-0.X5001-7.
Rahman, Q. A., et al. (2015, April). Utilizing ECG-Based
Heartbeat Classification for Hypertrophic
Cardiomyopathy Identification. IEEE Transactions on
Nanobioscience, 14(5). https://doi.org/10.1109/TNB.20
15.2426213.
Idri, A., Benhar, H., Fernández-Alemán, J. L., & Kadi, I.
(2018, May). A systematic map of medical data
preprocessing in knowledge discovery. Computer
Methods and Programs in Biomedicine, 162.
https://doi.org/10.1016/j.cmpb.2018.05.007.
Idri, A., Amazal, F. A., & Abran, A. (2014, August).
Analogy-based software development effort
estimation: A systematic mapping and review.
Information and Software Technology, 58.
https://doi.org/10.1016/j.infsof.2014.07.013.
Juhola, M., Joutsijoki, H., Penttinen, K., & Aalto-Setälä, K.
(2018, June). Detection of genetic cardiac diseases by
Ca2+ transient profiles using machine learning
methods. Scientific Reports, 8(1). https://doi.org/10.10
38/s41598-018-27695-5.
Kadi, I., Idri, A., & Fernandez-Aleman, J. L. (2017,
January). Knowledge discovery in cardiology: A
systematic literature review. International Journal of
Medical Informatics, 97, 12-32. https://doi.org/10.10
16/j.ijmedinf.2016.09.005.
Kadi, I., Idri, A., & Fernandez-Aleman, J. L. (2019,
September). Systematic mapping study of data mining–
based empirical studies in cardiology. Health
Informatics Journal, 25(14), 146045821771763.
https://doi.org/10.1177/1460458217717636.
Kitchenham, B., Budgen, D., & Brereton, P. (2010,
January). The value of mapping studies: A participant-
observer case study.
Kitchenham, B., Pearl, O., Budgen, D., Turner, M., Bailey,
J., & Linkman, S. (2009, January). Systematic literature
reviews in software engineering: A systematic literature
review. Information and Software Technology, 51(1),
7-15. https://doi.org/10.1016/j.infsof.2008.09.009.
Puyol Anton, E., et al. (2021). Statistical Atlases and
Computational Models of the Heart. M&Ms and
EMIDEC Challenges 11th International Workshop,
STACOM 2020, Held in Conjunction with MICCAI
2020, Lima, Peru, October 4, 2020, Revised Selected
Papers. Lecture Notes in Computer Science. Springer.
https://doi.org/10.1007/978-3-030-68107-4.
Seetharam, K., et al. (2022). Applications of Machine
Learning in Cardiology. Cardiology and Therapy,
11(24). https://doi.org/10.1007/s40119-022-00273-7.
Smole, T., et al. (2021). A machine learning-based risk
stratification model for ventricular tachycardia and
heart failure in hypertrophic cardiomyopathy.
Computers in Biology and Medicine, 135, 104648.
https://doi.org/10.1016/j.compbiomed.2021.104648.
Swathy, M., & Saruladha, K. (2021). A comparative study
of classification and prediction of Cardio-Vascular
Diseases (CVD) using Machine Learning and Deep
Learning techniques. ICT Express, 8(3).
https://doi.org/10.1016/j.icte.2021.08.021.