
REFERENCES
Akcay, S., Atapour-Abarghouei, A., and Breckon, T. P.
(2019). Ganomaly: Semi-supervised anomaly detec-
tion via adversarial training. In Jawahar, C. V., Li, H.,
Mori, G., and Schindler, K., editors, Computer Vision
– ACCV 2018, pages 622–637, Cham. Springer Inter-
national Publishing.
Batista, G. E. A. P. A., Prati, R. C., and Monard, M. C.
(2004). A study of the behavior of several methods for
balancing machine learning training data. SIGKDD
Explor. Newsl., 6(1):20–29.
Charitou, C., Dragicevic, S., and d’Avila Garcez, A. (2021).
Synthetic Data Generation for Fraud Detection using
GANs. arXiv e-prints, page arXiv:2109.12546.
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. (2002). Smote: Synthetic minority over-
sampling technique. SMOTE: Synthetic Minority
over-Sampling Technique, 16(1):321–357.
Devi, D., kr. Biswas, S., and Purkayastha, B. (2017).
Redundancy-driven modified tomek-link based under-
sampling: A solution to class imbalance. Pattern
Recognition Letters, 93:3–12. Pattern Recognition
Techniques in Data Mining.
Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue,
H., and Bing, G. (2017). Learning from class-
imbalanced data: Review of methods and applica-
tions. Expert Systems with Applications, 73:220–239.
He, H., Bai, Y., Garcia, E. A., and Li, S. (2008). Adasyn:
Adaptive synthetic sampling approach for imbalanced
learning. In 2008 IEEE International Joint Confer-
ence on Neural Networks (IEEE World Congress on
Computational Intelligence), pages 1322–1328.
Joshi, N. (2022). BBNTimes. https://www.bbntimes.com/
technology/can-synthetic-data-make-ai-better-
discover-the-benefits-of-synthetic-data. Accessed on
January 2024.
Luo, M., Wang, K., Cai, Z., Liu, A., Li, Y., and Cheang,
C. F. (2019). Using imbalanced triangle synthetic data
for machine learning anomaly detection. Computers,
Materials & Continua, 58(1):15–26.
Meng, C., Zhou, L., and Liu, B. (2020). A case study in
credit fraud detection with smote and xgboost. Jour-
nal of Physics: Conference Series, 1601(5):052016.
Mohammed, R., Rawashdeh, J., and Abdullah, M. (2020).
Machine learning with oversampling and undersam-
pling techniques: Overview study and experimen-
tal results. In 2020 11th International Conference
on Information and Communication Systems (ICICS),
pages 243–248.
Munir, M., Chattha, M. A., Dengel, A., and Ahmed, S.
(2019). A comparative analysis of traditional and
deep learning-based anomaly detection methods for
streaming data. In 2019 18th IEEE International
Conference On Machine Learning And Applications
(ICMLA), pages 561–566.
Nguyen, H. M., Cooper, E. W., and Kamei, K. (2011). Bor-
derline over-sampling for imbalanced data classifica-
tion. International Journal of Knowledge Engineering
and Soft Data Paradigms, 3(1):4–21.
Pang, G., Shen, C., Cao, L., and Hengel, V. D. (2022). Deep
learning for anomaly detection: A review. ACM Com-
puting Surveys, 54(2):1 – 38.
Park, N., Mohammadi, M., Gorde, K., Jajodia, S., Park, H.,
and Kim, Y. (2018). Data synthesis based on gener-
ative adversarial networks. Proceedings of the VLDB
Endowment, 11(10):1071–1083.
Sun, Y., Que, H., Cai, Q., Zhao, J., Li, J., Kong, Z., and
Wang, S. (2022). Borderline smote algorithm and
feature selection-based network anomalies detection
strategy. Energies 2022, 15(13).
Tanimoto, A., Yamada, S., Takenouchi, T., Sugiyama, M.,
and Kashima, H. (2022). Improving imbalanced clas-
sification using near-miss instances. Expert Systems
with Applications, 201:117130.
Xu, L. and Veeramachaneni, K. (2018). Synthesizing tabu-
lar data using generative adversarial networks. CoRR,
abs/1811.11264.
Zaccarelli, R., Bindi, D., and Strollo, A. (2021). Anomaly
detection in seismic data–metadata using simple
machine-learning models. Seismological Research
Letters, 92(4):2627–2639.
Zhao, Y., Nasrullah, Z., and Li, Z. (2019). PyOD: A python
toolbox for scalable outlier detection. Journal of Ma-
chine Learning Research, 20(96):1–7.
Privacy-Preserving Anomaly Detection Through Sampled, Synthetic Data Generation
747