
of lightweight block ciphers for the internet of things.
Journal of Cryptographic Engineering, 9.
Dobraunig, C., Eichlseder, M., Mendel, F., and Schl
¨
affer,
M. (2021). Ascon v1.2: Lightweight authenticated
encryption and hashing. J. Cryptol., 34(3).
Duval, S. and Leurent, G. (2020). Lightweight macs from
universal hash functions. In Bela
¨
ıd, S. and G
¨
uneysu,
T., editors, Smart Card Research and Advanced Appli-
cations, pages 195–215, Cham. Springer International
Publishing.
Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A.,
and Uhsadel, L. (2007). A survey of lightweight-
cryptography implementations. IEEE Design and Test
of Computers, 24(6):522–533.
Engels, D., Saarinen, M.-J. O., Schweitzer, P., and Smith,
E. M. (2012). The hummingbird-2 lightweight authen-
ticated encryption algorithm. In Juels, A. and Paar,
C., editors, RFID. Security and Privacy, pages 19–31,
Berlin, Heidelberg. Springer Berlin Heidelberg.
Farhan, L. and Kharel, R. (2019). Internet of Things:
Vision, Future Directions and Opportunities, pages
331–347. Springer International Publishing, Cham.
Guo, J., Peyrin, T., and Poschmann, A. (2011). The pho-
ton family of lightweight hash functions. In Rogaway,
P., editor, Advances in Cryptology – CRYPTO 2011,
pages 222–239, Berlin, Heidelberg. Springer Berlin
Heidelberg.
Harbi, Y., Aliouat, Z., Refoufi, A., and Harous, S. (2021).
Recent security trends in internet of things: A com-
prehensive survey. IEEE Access, 9:113292–113314.
Hatzivasilis, G., Fysarakis, K., Papaefstathiou, I., and Man-
ifavas, H. (2018). A review of lightweight block ci-
phers. Journal of Cryptographic Engineering, 8:1–44.
Khan, M. A., Quasim, M. T., Alghamdi, N. S., and Khan,
M. Y. (2020). A secure framework for authentication
and encryption using improved ecc for iot-based med-
ical sensor data. IEEE Access, 8:52018–52027.
Kouicem, D. E., Bouabdallah, A., and Lakhlef, H. (2018).
Internet of things security: A top-down survey. Com-
puter Networks, 141:199–221.
Leander, G., Paar, C., Poschmann, A., and Schramm, K.
(2007). New lightweight des variants. volume 4593,
pages 196–210.
Lee, D., Kim, D.-C., Kwon, D., and Kim, H. (2014). Ef-
ficient hardware implementation of the lightweight
block encryption algorithm lea. Sensors, 14(1):975–
994.
Luykx, A., Preneel, B., Tischhauser, E., and Yasuda, K.
(2016). A mac mode for lightweight block ciphers.
In Peyrin, T., editor, Fast Software Encryption, pages
43–59, Berlin, Heidelberg. Springer Berlin Heidel-
berg.
Manyika, J., Chui, M., Bisson, P., Woetzel, J., Dobbs, R.,
Bughin, J., and Aharon, D. (2015). Unlocking the
potential of the internet of things. McKinsey Global
Institute, 1.
Matsui, M. and Murakami, Y. (2014). Minimalism of soft-
ware implementation. pages 393–409.
Miller, V. S. (1986). Use of elliptic curves in cryptogra-
phy. In Williams, H. C., editor, Advances in Cryp-
tology — CRYPTO ’85 Proceedings, pages 417–426,
Berlin, Heidelberg. Springer Berlin Heidelberg.
Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D.,
Preneel, B., and Verbauwhede, I. (2014). Chaskey: An
efficient mac algorithm for 32-bit microcontrollers. In
Joux, A. and Youssef, A., editors, Selected Areas in
Cryptography – SAC 2014, pages 306–323, Cham.
Springer International Publishing.
Patel, S. T. and Mistry, N. H. (2015). A survey: Lightweight
cryptography in wsn. In 2015 International Confer-
ence on Communication Networks (ICCN), pages 11–
15.
˚
Agren, M., Hell, M., Johansson, T., and Meier, W. (2011).
Grain-128a: a new version of grain-128 with op-
tional authentication. Int. J. Wire. Mob. Comput.,
5(1):48–59.
Ranganatha Rao, B. and Sujatha, B. (2023). A hybrid el-
liptic curve cryptography (hecc) technique for fast en-
cryption of data for public cloud security. Measure-
ment: Sensors, 29:100870.
Rivest, R. L., Shamir, A., and Adleman, L. (1978). A
method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM, 21(2):120–126.
Sehrawat, D. and Gill, N. (2019). A review on performance
evaluation criteria and tools for lightweight block ci-
phers. International Journal of Advanced Trends in
Computer Science and Engineering, 8:630–639.
Sevin, A. and Mohammed, A. (2021). A survey on soft-
ware implementation of lightweight block ciphers for
iot devices. Journal of Ambient Intelligence and Hu-
manized Computing, 14:1–15.
Shi, T. and and, J. G. (2019). Cryptanalysis of the authen-
tication in acorn. KSII Transactions on Internet and
Information Systems, 13(8):4060–4075.
Shirai, T., Shibutani, K., Akishita, T., Moriai, S., and Iwata,
T. (2007). The 128-bit blockcipher clefia (extended
abstract). In Biryukov, A., editor, Fast Software En-
cryption, pages 181–195, Berlin, Heidelberg. Springer
Berlin Heidelberg.
Singh, S., Sharma, P., Moon, S., and Park, J. (2017).
Advanced lightweight encryption algorithms for iot
devices: survey, challenges and solutions. Journal
of Ambient Intelligence and Humanized Computing,
15:1–18.
Stallings, W. (2013). Cryptography and Network Security:
Principles and Practice. Prentice Hall Press, USA,
6th edition.
Thakor, V. A., Razzaque, M. A., and Khandaker, M.
R. A. (2021). Lightweight cryptography algorithms
for resource-constrained iot devices: A review, com-
parison and research opportunities. IEEE Access,
9:28177–28193.
Watanabe, D., Ideguchi, K., Kitahara, J., Muto, K., Fu-
ruichi, H., and Kaneko, T. (2008). Enocoro-80: A
hardware oriented stream cipher. In 2008 Third In-
ternational Conference on Availability, Reliability and
Security, pages 1294–1300.
SECRYPT 2024 - 21st International Conference on Security and Cryptography
770